161 research outputs found
Feshbach blockade: single-photon nonlinear optics using resonantly enhanced cavity-polariton scattering from biexciton states
We theoretically demonstrate how the resonant coupling between a pair of
cavity-polaritons and a biexciton state can lead to a large single-photon Kerr
nonlinearity in a semiconductor solid-state system. A fully analytical model of
the scattering process between a pair of cavity-polaritons is developed, which
explicitly includes the biexcitonic intermediate state. A dramatic enhancement
of the polariton-polariton interactions is predicted in the vicinity of the
biexciton Feshbach resonance. Application to the generation of non-classical
light from polariton dots is discussed
Quantum-dot-spin single-photon interface
Using background-free detection of spin-state-dependent resonance
fluorescence from a single-electron charged quantum dot with an efficiency of
0:1%, we realize a single spin-photon interface where the detection of a
scattered photon with 300 picosecond time resolution projects the quantum dot
spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of
resonantly scattered photons reveals information about electron spin dynamics.
High-fidelity fast spin-state initialization heralded by a single photon
enables the realization of quantum information processing tasks such as
non-deterministic distant spin entanglement. Given that we could suppress the
measurement back-action to well below the natural spin-flip rate, realization
of a quantum non-demolition measurement of a single spin could be achieved by
increasing the fluorescence collection efficiency by a factor exceeding 20
using a photonic nanostructure
Quantum measurement of a mesoscopic spin ensemble
We describe a method for precise estimation of the polarization of a
mesoscopic spin ensemble by using its coupling to a single two-level system.
Our approach requires a minimal number of measurements on the two-level system
for a given measurement precision. We consider the application of this method
to the case of nuclear spin ensemble defined by a single electron-charged
quantum dot: we show that decreasing the electron spin dephasing due to nuclei
and increasing the fidelity of nuclear-spin-based quantum memory could be
within the reach of present day experiments.Comment: 8 pages, 2 figures; minor changes, published versio
Polariton Analysis of a Four-Level Atom Strongly Coupled to a Cavity Mode
We present a complete analytical solution for a single four-level atom
strongly coupled to a cavity field mode and driven by external coherent laser
fields. The four-level atomic system consists of a three-level subsystem in an
EIT configuration, plus an additional atomic level; this system has been
predicted to exhibit a photon blockade effect. The solution is presented in
terms of polaritons. An effective Hamiltonian obtained by this procedure is
analyzed from the viewpoint of an effective two-level system, and the dynamic
Stark splitting of dressed states is discussed. The fluorescence spectrum of
light exiting the cavity mode is analyzed and relevant transitions identified.Comment: 12 pages, 9 figure
Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons
Two light pulses propagating with ultra-slow group velocities in a coherently
prepared atomic gas exhibit dissipation-free nonlinear coupling of an
unprecedented strength. This enables a single-photon pulse to coherently
control or manipulate the quantum state of the other. Processes of this kind
result in generation of entangled states of radiation field and open up new
prospectives for quantum information processing
Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency
We propose an optical double-cavity resonator whose response to a signal is
similar to that of an Electromagnetically Induced Transparency (EIT) medium. A
combination of such a device with a four-level EIT medium can serve for
achieving large cross-Kerr modulation of a probe field by a signal field. This
would offer the possibility of building a quantum logic gate based on photonic
qubits. We discuss the technical requirements that are necessary for realizing
a probe-photon phase shift of Pi caused by a single-photon signal. The main
difficulty is the requirement of an ultra-low reflectivity beamsplitter and to
operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor
changes in discussion of experimental conditions
Cavity-induced coherence effects in spontaneous emission from pre-Selection of polarization
Spontaneous emission can create coherences in a multilevel atom having close
lying levels, subject to the condition that the atomic dipole matrix elements
are non-orthogonal. This condition is rarely met in atomic systems. We report
the possibility of bypassing this condition and thereby creating coherences by
letting the atom with orthogonal dipoles to interact with the vacuum of a
pre-selected polarized cavity mode rather than the free space vacuum. We derive
a master equation for the reduced density operator of a model four level atomic
system, and obtain its analytical solution to describe the interference
effects. We report the quantum beat structure in the populations.Comment: 6 pages in REVTEX multicolumn format, 5 figures, new references
added, journal reference adde
Symmetric photon-photon coupling by atoms with Zeeman-split sublevels
We propose a simple scheme for highly efficient nonlinear interaction between
two weak optical fields. The scheme is based on the attainment of
electromagnetically induced transparency simultaneously for both fields via
transitions between magnetically split F=1 atomic sublevels, in the presence of
two driving fields. Thereby, equal slow group velocities and symmetric
cross-coupling of the weak fields over long distances are achieved. By simply
tuning the fields, this scheme can either yield giant cross-phase modulation or
ultrasensitive two-photon switching.Comment: Modified scheme, 4 pages, 1 figur
- …