5,736 research outputs found

    Identification of Aerodynamic Sound Source in the Wake of a Rotating Circular Cylinder

    Get PDF
    In order to reduce aerodynamic noise radiated from the turbulent wake of bluff bodies, vorticity structures and flow field around a rotating circular cylinder at Reynolds numbers between 102 and 104 were numerically investigated. Vorticity structures and resultant aerodynamic noise is strongly dependant on the velocity ratio, which is defined as flow velocity over rotational speed to the cylinder. At low velocity ratio, the noise level and aerodynamic forces increase and an anti-symmetric vorticity structure is observed. On the other hand, the absolute value of lift-drag ratio becomes small and alternative vorticity structure disappears as the velocity ratio exceeds about 2. As a result, the fluctuating aerodynamic forces become weak and the resulting aerodynamic sound becomes small. The noise level of the rotational cylinder is 10 dB lower than that of the conventional circular cylinder. Source terms of aerodynamic sound were also visualized by using vortex sound theory. The intensity of the source term of the separated shear layer rapidly change as the shear layers roll up. Therefore, the separated shear layers play an important role in generating aerodynamic sound at low velocity ratio. Since the anti-symmetric vorticity structure disappears at high velocity ratio, vorticity fluctuation and resultant aerodynamic noise is restrained. As a result, very interestingly, in the case of the high velocity ratio the intensity of the source term generated by the separated shear layer is maintained, however, the noise level gradually decreases. This reveals that cylinder rotation is an effective method for reducing the aerodynamic noise radiated from a turbulent wake

    Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth

    Get PDF
    We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness)

    Backflow and dissipation during the quantum decay of a metastable Fermi liquid

    Full text link
    The particle current in a metastable Fermi liquid against a first-order phase transition is calculated at zero temperature. During fluctuations of a droplet of the stable phase, in accordance with the conservation law, not only does an unperturbed current arise from the continuity at the boundary, but a backflow is induced by the density response. Quasiparticles carrying these currents are scattered by the boundary, yielding a dissipative backflow around the droplet. An energy of the hydrodynamic mass flow of the liquid and a friction force exerted on the droplet by the quasiparticles have been obtained in terms of a potential of their interaction with the droplet.Comment: 5 pages (REVTeX), to be published in Phys. Rev.

    The Dialectics of Parenting: Changes in the Interplay of Maternal Behaviors during Early and Middle Childhood

    Get PDF
    Parent and child relationships continuously evolve, part of an ongoing dialectic that derives from developmental changes in both parent and child. The focus of this study is on changes in the strength of association among four types of parenting behaviors considered important for children’s development: supportive presence, respect for autonomy, stimulation, and hostility. Mother–child interaction was observed for 1229 parent–child dyads at 36 months, 54 months, 1st grade, 3rd grade, and 5th grade using similar observational paradigms. The association between respect for autonomy and supportive presence was strong at age three and continued to be strong over time. The association between respect for autonomy and stimulation was modest but also showed little change from age three to 5th grade. Respect for autonomy was negatively associated with maternal hostility, but the relation was complex. It was stronger at 54 months than 36 months but then became weaker through time. Supportive presence showed a moderate relation with stimulation at age 3 but the association became weaker over time. Supportive presence showed an expected negative association with hostility, a relation that changed little over time. The relation between hostility and stimulation also became weaker over time. In effect, there appears to be a shifting pattern of relations between maternal behaviors during early and middle childhood, one that reflects an evolving dialectic in the mother–child relationship

    Instability of a gapless color superconductor with respect to inhomogeneous fluctuations

    Full text link
    We systematically apply density functional theory to determine the kind of inhomogeneities that spontaneously develop in a homogeneous gapless phase of neutral two-flavor superfluid quark matter. We consider inhomogeneities in the quark and electron densities and in the phases and amplitude of the order parameter. These inhomogeneities are expected to lead the gapless phase to a BCS-normal coexisting phase, a Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state with phase oscillations alone, and a LOFF state with amplitude oscillations. We find that which of them the homogeneous system tends towards depends sensitively on the chemical potential separation between up and down quarks and the gradient energies.Comment: 15 pages, 3 figures; corrected Eq. (36) and changed content associated with d quark clustering instabilit

    A note on color neutrality in NJL-type models

    Full text link
    By referring to the underlying physics behind the color charge neutrality condition in quark matter, we discuss how this condition should be properly imposed in NJL-type models in a phenomenologically meaningful way. In particular, we show that the standard assumption regarding the use of two color chemical potentials, chosen in a very special way, is not justified in general. When used uncritically, such an approach leads to wrong or unphysical conclusions.Comment: 4 pages, no figure; v2: minor clarifications, references adde

    Bulk superconducting nano-composites with high critical currents

    Get PDF
    Flux pinning sites are most effective if their size is comparable to the superconducting coherence length, which is on the nano-meter scale for RE-Ba-Cu-O superconductors [RE = rare earth element]. Introducing nano-phase inclusions directly into the bulk superconducting material has only been partially successful to date, however, due primarily to the absence of chemically stable phases that can co-exist with RE-Ba-Cu-O without suppressing its key superconducting properties. We have identified novel isostructural phases based on (RE)2Ba4CuMOy (where M = W, Zr, Nb, Ag and Bi) and have fabricated successfully superconducting bulk nano-composites with a high current carrying capability. The average size of the nano-inclusions is observed to vary from 20 nm to 300 nm depending on element M. An observed improvement in Jc under low and high external magnetic fields at 77 K correlates directly with an increased density of nano-inclusions in the superconducting matrix

    Scalar-Quark Systems and Chimera Hadrons in SU(3)_c Lattice QCD

    Get PDF
    Light scalar-quarks \phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation in strong interaction without chiral symmetry breaking. We investigate ``scalar-quark mesons'' \phi^\dagger \phi and ``scalar-quark baryons'' \phi\phi\phi which are the bound states of scalar-quarks \phi. We also investigate the bound states of scalar-quarks \phi and quarks \psi, i.e., \phi^\dagger \psi, \psi\psi\phi and \phi\phi\psi, which we name ``chimera hadrons''. All the new-type hadrons including \phi are found to have a large mass even for zero bare scalar-quark mass m_\phi=0 at a^{-1}\simeq 1GeV. We find that the constituent scalar-quark and quark picture is satisfied for all the new-type hadrons. Namely, the mass of the new-type hadron composed of m \phi's and n \psi's, M_{{m}\phi+{n}\psi}, satisfies M_{{m}\phi+{n}\psi}\simeq {m} M_\phi +{n} M_\psi, where M_\phi and M_\psi are the constituent scalar-quark and quark mass, respectively. M_\phi at m_\phi=0 estimated from these new-type hadrons is 1.5-1.6GeV, which is larger than that of light quarks, M_\psi\simeq 400{\rm MeV}. Therefore, in the systems of scalar-quark hadrons and chimera hadrons, scalar-quarks acquire large mass due to large quantum corrections by gluons. Together with other evidences of mass generations of glueballs and charmonia, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.Comment: 9 pages, 9 figure
    corecore