905 research outputs found

    Observational Features of Black Holes

    Full text link
    Recently considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. We discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. Some time ago suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.Comment: Plenary talk presented at Workshop on High Energy Physics&Field Theory (Protvino, Russia, 2004

    Signatures of rotating binaries in micro-lensing experiments

    Full text link
    Gravitational microlensing offers a powerful method with which to probe a variety of binary-lens systems, as the binarity of the lens introduces deviations from the typical (single-lens) Paczy\'nski behaviour in the event light curves. Generally, a static binary lens is considered to fit the observed light curve and, when the orbital motion is taken into account, an oversimplified model is usually employed. In this paper, we treat the binary-lens motion in a realistic way and focus on simulated events that are fitted well by a Paczy\'nski curve. We show that an accurate timing analysis of the residuals (calculated with respect to the best-fitting Paczy\'nski model) is usually sufficient to infer the orbital period of the binary lens. It goes without saying that the independently estimated period may be used to further constrain the orbital parameters obtained by the best-fitting procedure, which often gives degenerate solutions. We also present a preliminary analysis of the event OGLE-2011-BLG-1127 / MOA-2011-BLG-322, which has been recognized to be the result of a binary lens. The period analysis results in a periodicity of \simeq 12 days, which confirms the oscillation of the observed data around the best-fitting model. The estimated periodicity is probably associated with an intrinsic variability of the source star, and therefore there is an opportunity to use this technique to investigate either the intrinsic variability of the source or the effects induced by the binary-lens orbital motion.Comment: In press on MNRAS, 2014. 8 pages, 4 figures. On-line material available on the Journal web-pag

    A catalogue sample of low mass galaxies observed in X-rays with central candidate black holes

    Full text link
    We present a sample of XX-ray selected candidate black holes in 51 low mass galaxies with z≤0.055z\le 0.055 {and mass up to 101010^{10} M⊙_{\odot}} obtained by cross-correlating the NASA-SLOAN Atlas with the 3XMM catalogue. {We have also searched in the available catalogues for radio counterparts of the black hole candidates and find that 19 of the previously selected sources have also a radio counterpart.} Our results show that about 37%37\% of the galaxies of our sample host { an XX-ray source} (associated to a radio counterpart) spatially coincident with the galaxy center, in agreement with { other recent works}. For these {\it nuclear} sources, the XX-ray/radio fundamental plane relation allows one to estimate the mass of the (central) candidate black holes which results to be in the range 104−2×10810^{4}-2\times10^{8} M⊙_{\odot} (with median value of ≃3×107\simeq 3\times 10^7 M⊙_{\odot} and eight candidates having mass below 10710^{7} M⊙_{\odot}). This result, while suggesting that XX-ray emitting black holes in low-mass galaxies may have had a key role in the evolution of such systems, makes even more urgent to explain how such massive objects formed in galaxies. {Of course, dedicated follow-up observations both in the XX-ray and radio bands, as well as in the optical, are necessary in order to confirm our resultsComment: 15 Pages, 2 Figures, 3 Table

    XMM-Newton observation of a sample of four close dSph galaxies

    Get PDF
    We present the results of the analysis of deep archival \sat\ observations towards the dwarf spheroidal galaxies Draco, Leo I, Ursa Major II and Ursa Minor in the Milky Way neighbourhood. The X-ray source population is characterized and cross-correlated with available databases with the aim to infer their nature. We also investigate if intermediate-mass black holes are hosted in the center of these galaxies. In the case of Draco, we detect 96 high-energy sources, two of them being possibly local stars, while no evidence for any X-ray emitting central compact object is found. Towards the Leo I and UMa II field of view we reveal 116 and 49 X-ray sources, respectively. None of them correlates with the putative central black holes and only one is likely associated with a UMa II local source. The study of the UMi dwarf galaxy shows 54 high-energy sources and a possible association {with a source at the dSph center}. We put an upper limit to the central compact object luminosity of 4.02×\times1033^{33} erg/s. Furthermore, via the correlation with a radio source near the galactic center, we get that the putative black hole should have a mass of (2.76−2.54+32.00)×106M⊙\left(2.76^{+32.00}_{-2.54}\right)\times10^6 M_{\odot} and be radiatively inefficient. This confirms a previous result obtained by using Chandra data alone.Comment: MNRAS, in press, tables available on lin

    Starspot induced effects in microlensing events with rotating source star

    Full text link
    We consider the effects induced by the presence of hot and cold spots on the source star in the light curves of simulated microlensing events due to either single or binary lenses taking into account the rotation of the source star and the orbital motion of the lens system. Our goal is to study the anomalies induced by these effects on simulated microlensing light curves.Comment: 5 pages, 2 figures, accepted for publication in MNRA

    Astrometric microlensing

    Full text link
    Astrometric microlensing will offer in the next future a new channel for investigating the nature of both lenses and sources involved in a gravitational microlensing event. The effect, corresponding to the shift of the position of the multiple image centroid with respect to the source star location, is expected to occurr on scales from micro-arcoseconds to milli-arcoseconds depending on the characteristics of the lens-source system. Here, we consider different classes of events (single/binary lens acting on a single/binary source) also accounting for additional effects including the finite source size, the blending and orbital motion. This is particularly important in the era of Gaia observations which is making possible astrometric measurements with unprecedent quality.Comment: On IJMP D, 15 pages, 6 Figure

    Dna methylation dysfunction in chronic kidney disease

    Get PDF
    Renal disease is the common denominator of a number of underlying disease conditions, whose prevalence has been dramatically increasing over the last two decades. Two aspects are particularly relevant to the subject of this review: (I) most cases are gathered under the umbrella of chronic kidney disease since they require—predictably for several lustrums—continuous clinical monitoring and treatment to slow down disease progression and prevent complications; (II) cardiovascular disease is a terrible burden in this population of patients, in that it claims many lives yearly, while only a scant minority reach the renal disease end stage. Why indeed a review on DNA methylation and renal disease? As we hope to convince you, the present evidence supports the role of the existence of various derangements of the epigenetic control of gene expression in renal disease, which hold the potential to improve our ability, in the future, to more effectively act toward disease progression, predict outcomes and offer novel therapeutic approaches

    Observing molecular hydrogen clouds and dark massive objects in galactic halos

    Get PDF
    Molecular hydrogen clouds can contribute substantially to the galactic halo< dark matter and may lead to the birth of massive halo objects (MHOs) observed indirectly by microlensing. We present a method to detect these molecular clouds in the halo of M31 using the Doppler shift effect. We also consider the possibility to directly observe MHOs in the halo of M31 via their infrared emission.Comment: 7 pages, postscript file, to appear in Astron. & Astrophy
    • …
    corecore