23 research outputs found

    Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions.

    No full text
    The dipole component of the membrane boundary potential, phi(d), is an integral parameter that may report on the conformational state of the lipid headgroups and their hydration. In this work, we describe an experimental approach to measurements of the dipole potential changes, Deltaphi(d), and apply it in studies of Be(2+) and Gd(3+) interactions with membranes composed of phosphatidylserine (PS), phosphatidylcholine (PC), and their mixtures. Deltaphi(d) is determined as the difference between the changes of the total boundary potential, phi(b), measured by the IFC method in planar lipid membranes and the surface potential, phi(s), determined from the electrophoretic mobility of liposomes. The Gouy-Chapman-Stern formalism, combined with the condition of mass balance, well describes the ion equilibria for these high-affinity cations. For the adsorption of Be(2+) and Gd(3+) to PC membranes, and of Mg(2+) to PS membranes, the values of Deltaphi(b) and Deltaphi(s) are the same, indicative of no change of phi(d). Binding of Gd(3+) to PS-containing membranes induces changes of phi(d) of opposite signs depending on the density of ionized PS headgroups in the bilayer. At low density, the induced Deltaphi(d) is negative (-30 mV), consistent with the effect of dehydration of the surface. At maximal density (pure PS, neutral pH), adsorption of Be(2+) or Gd(3+) induces an increase of phi(d) of 35 or 140 mV, respectively. The onset of the strong positive dipole effect on PS membranes with Gd(3+) is observed near the zero charge point and correlates with a six-fold increase of membrane tension. The observed phenomena may reflect concerted reorientation of dipole moments of PS headgroups as a result of ion adsorption and lipid condensation. Their possible implications to in-vivo effects of these high-affinity ions are discussed

    Imbalance in the blood antioxidant system in growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy

    Get PDF
    The aim of our study was to examine the effects of 12-month therapy with recombinant growth hormone (rGH) on the blood antioxidant system in children with growth hormone deficiency (GHD). Total antioxidant capacity (TAC) of plasma was measured by FRAP (ferric reducing antioxidant power or ferric reducing ability of plasma); activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes were assessed; non-protein thiols (NT) and ceruloplasmin (CP) levels were also measured. These parameters were determined before and after 12 month of rGH treatment. Eleven treatment-naive prepubertal children with growth hormone deficiency were included in the study. Another 11 prepubertal children comprised a control group. Before rGH treatment, TAC of plasma and NT level in the control group were significantly lower (726 ± 196 vs. 525 ± 166 µmol/L, P = 0.0182 and 0.92 ± 0.18 vs. 0.70 ± 0.22 µmol/ml, P = 0.0319, before and after the therapy, respectively). The only parameter that significantly (19.6 ± 4.7 vs. 14.5 ± 3.4 Units/g Hb, P = 0.0396) exceeded the same in the control group after rGH therapy was SOD activity. However, none of the measured parameters of antioxidant system in GHD children, except for TAC (525 ± 166 vs. 658 ± 115 µmol/L, P = 0.0205), exhibited significant improvement toward the end of the 12-month treatment period, although non-significant changes in CAT activity and CP level were also observed. This work has demonstrated that some parameters of the blood antioxidant system are out of balance and even impaired in GHD children. A 12-month treatment with rGH resulted in a partial improvement of the antioxidant system

    Vibrational Spectroscopy as a Tool for Bioanalytical and Biomonitoring Studies

    No full text
    The review briefly describes various types of infrared (IR) and Raman spectroscopy methods. At the beginning of the review, the basic concepts of biological methods of environmental monitoring, namely bioanalytical and biomonitoring methods, are briefly considered. The main part of the review describes the basic principles and concepts of vibration spectroscopy and microspectrophotometry, in particular IR spectroscopy, mid- and near-IR spectroscopy, IR microspectroscopy, Raman spectroscopy, resonance Raman spectroscopy, Surface-enhanced Raman spectroscopy, and Raman microscopy. Examples of the use of various methods of vibration spectroscopy for the study of biological samples, especially in the context of environmental monitoring, are given. Based on the described results, the authors conclude that the near-IR spectroscopy-based methods are the most convenient for environmental studies, and the relevance of the use of IR and Raman spectroscopy in environmental monitoring will increase with time

    Unraveling cell processes: interference imaging interwoven with data analysis

    No full text
    The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties

    Imbalance in the blood antioxidant system in growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy

    No full text
    The aim of our study was to examine the effects of 12-month therapy with recombinant growth hormone (rGH) on the blood antioxidant system in children with growth hormone deficiency (GHD). Total antioxidant capacity (TAC) of plasma was measured by FRAP (ferric reducing antioxidant power or ferric reducing ability of plasma); activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes were assessed; non-protein thiols (NT) and ceruloplasmin (CP) levels were also measured. These parameters were determined before and after 12 month of rGH treatment. Eleven treatment-naive prepubertal children with growth hormone deficiency were included in the study. Another 11 prepubertal children comprised a control group. Before rGH treatment, TAC of plasma and NT level in the control group were significantly lower (726 ± 196 vs. 525 ± 166 µmol/L, P = 0.0182 and 0.92 ± 0.18 vs. 0.70 ± 0.22 µmol/ml, P = 0.0319, before and after the therapy, respectively). The only parameter that significantly (19.6 ± 4.7 vs. 14.5 ± 3.4 Units/g Hb, P = 0.0396) exceeded the same in the control group after rGH therapy was SOD activity. However, none of the measured parameters of antioxidant system in GHD children, except for TAC (525 ± 166 vs. 658 ± 115 µmol/L, P = 0.0205), exhibited significant improvement toward the end of the 12-month treatment period, although non-significant changes in CAT activity and CP level were also observed. This work has demonstrated that some parameters of the blood antioxidant system are out of balance and even impaired in GHD children. A 12-month treatment with rGH resulted in a partial improvement of the antioxidant system

    New insight into the mechanism of mitochondrial cytochrome c function.

    Get PDF
    We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme. It is suggested that the conformational mobility of cytochrome c heme is responsible for its optimal orientation with respect to electron donor and acceptor within ubiquinol-cytochrome c oxidoreductase (complex III) and cytochrome c oxidase (complex IV), respectively, thus, ensuring electron transfer from complex III to complex IV. To validate the model, we design several mutant variants of horse cytochrome c with multiple substitutions of amino acid residues in the P76GTKMIFA83 sequence that reduce its ability to undergo conformational rearrangements. With this, we study the succinate-cytochrome c reductase and cytochrome c oxidase activities of rat liver mitoplasts in the presence of mutant variants of cytochrome c. The electron transport activity of the mutant variants decreases to different extent. Resonance Raman spectroscopy (RRS) and surface-enhanced Raman spectroscopy (SERS) data demonstrate, that all mutant cytochromes possess heme with the higher degree of ruffling deformation, than that of the wild-type (WT) cytochrome c. The increase in the ruffled deformation of the heme of oxidized cytochromes correlated with the decrease in the electron transport rate of ubiquinol-cytochrome c reductase (complex III). Besides, all mutant cytochromes have lower mobility of the pyrrol rings and methine bridges, than WT cytochrome c. We show that a decrease in electron transport activity in the mutant variants correlates with conformational changes and reduced mobility of heme porphyrin. This points to a significant role of the P76GTKMIFA83 fragment in the electron transport function of cytochrome c
    corecore