151 research outputs found

    Mechanisms producing fissionlike binary fragments in heavy collisions

    Full text link
    The mixing of the quasifission component to the fissionlike cross section causes ambiguity in the quantitative estimation of the complete fusion cross section from the observed angular and mass distributions of the binary products. We show that the partial cross section of quasifission component of binary fragments covers the whole range of the angular momentum values leading to capture. The calculated angular momentum distributions for the compound nucleus and dinuclear system going to quasifission may overlap: competition between complete fusion and quasifission takes place at all values of initial orbital angular momentum. Quasifission components formed at large angular momentum of the dinuclear system can show isotropic angular distribution and their mass distribution can be in mass symmetric region similar to the characteristics of fusion-fission components. As result the unintentional inclusion of the quasifission contribution into the fusion-fission fragment yields can lead to overestimation of the probability of the compound nucleus formation.Comment: 15 pages, 6 figures, International Conference on Nuclear Reactions on Nucleons and Nuclei, Messina, Italy, October 5-9, 200

    The Threshold effects for the two-particle Hamiltonians on lattices

    Full text link
    For a wide class of two-body energy operators h(k)h(k) on the three-dimensional lattice \bbZ^3, kk being the two-particle quasi-momentum, we prove that if the following two assumptions (i) and (ii) are satisfied, then for all nontrivial values kk, k0k\ne 0, the discrete spectrum of h(k)h(k) below its threshold is non-empty. The assumptions are: (i) the two-particle Hamiltonian h(0)h(0) corresponding to the zero value of the quasi-momentum has either an eigenvalue or a virtual level at the bottom of its essential spectrum and (ii) the one-particle free Hamiltonians in the coordinate representation generate positivity preserving semi-groups

    A study of the almost sequential mechanism of true ternary fission

    Full text link
    We consider the collinear ternary fission which is a sequential ternary decay with a very short time between the ruptures of two necks connecting the middle cluster of the ternary nuclear system and outer fragments. In particular, we consider the case where the Coulomb field of the first massive fragment separated during the first step of the fission produces a lower pre-scission barrier in the second step of the residual part of the ternary system. In this case, we obtain a probability of about 10310^{-3} for the yield of massive clusters such as \nuclide[70]{Ni}, \nuclide[80-82]{Ge}, \nuclide[86]{Se}, and \nuclide[94]{Kr} in the ternary fission of \nuclide[252]{Cf}. These products appear together with the clusters having mass numbers of A=132A = 132--140140. The results show that the yield of a heavy cluster such as \nuclide[68-70]{Ni} would be followed by a product of A=138A = 138--148148 with a large probability as observed in the experimental data obtained with the FOBOS spectrometer at the Joint Institute for Nuclear Research. The third product is not observed. The landscape of the potential energy surface shows that the configuration of the Ni + Ca + Sn decay channel is lower about 12 MeV than that of the Ca + Ni + Sn channel. This leads to the fact, that the yield of Ni and Sn is large. The analysis on the dependence of the velocity of the middle fragment on mass numbers of the outer products leads to the conclusion that, in the collinear tripartition channel of \nuclide[252]{Cf}, the middle cluster has a very small velocity, which does not allow it to be found in experiments.Comment: 11 pages, 9 figure

    Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element

    Full text link
    The yields of evaporation residues, fusion-fission and quasifission fragments in the 48^{48}Ca+144,154^{144,154}Sm and 16^{16}O+186^{186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the 48^{48}Ca+154^{154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in 48^{48}Ca+154^{154}Sm at the large collision energies and the lack of quasifission fragments in the 48^{48}Ca+144^{144}Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element ZZ=120 (AA=302) show that the 54^{54}Cr+248^{248}Cm reaction is preferable in comparison with the 58^{58}Fe+244^{244}Pu and 64^{64}Ni+238^{238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.

    Peculiarities of Nuclear Fusion in Synthesis of Superheavy Elements

    Get PDF
    The small probabilities of synthesis of new superheavy elements at GSI (Darmstadt, Germany), Joint Institute for Nuclear Research (Dubna, Russia), and RIKEN (Wako, Japan) during the last decade stimulate the experimental and theoretical studies of the nuclear reaction mechanism. 1– 4 In preparation of these experiments, the main aim is to reach maximum cross sections of the yield of evaporation residues (ER) as a result of the de-excitation of the heated compound nucleus which is formed in complete fusion of the projectile and target nuclei. Because the ER excitation function in the synthesis of superheavy elements has very narrow width for "cold fusion" reactions (5–10 MeV) with 208 Pb and 209 Bi targets 5 and the width of the "hot fusion" reactions with 48 Ca projectile on actinide ta
    corecore