260 research outputs found
Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate
We calculate the effect of the interaction between an optically active
material and a Bose-Einstein condensate on the collective oscillations of the
condensate. We provide explicit expressions for the frequency shift of the
center of mass oscillation in terms of the potential generated by the substrate
and of the density profile of the gas. The form of the potential is discussed
in details and various regimes (van der Waals-London, Casimir-Polder and
thermal regimes) are identified as a function of the distance of atoms from the
surface. Numerical results for the frequency shifts are given for the case of a
sapphire dielectric substrate interacting with a harmonically trapped
condensate of Rb atoms. We find that at distances of , where
thermal effects become visible, the relative frequency shifts produced by the
substrate are of the order and hence accessible experimentally. The
effects of non linearities due to the finite amplitude of the oscillation are
explicitly discussed. Predictions are also given for the radial breathing mode.Comment: 28 pages, 10 figures. Submitted to PR
A study of socialization of children and student-age youth by the express diagnostics methods
The article reveals the research methodology and describes approaches to study psychological and pedagogical level of socialization of children and student-age youth in Russia using advanced technological equipment. The authors carry out the analysis of the conventional and up-to-date methods of psycho-pedagogical investigation through the express diagnostics. One of these methods consists in the application of the diagnostic game designers, their integrated effect on the human body, based on measurement of physical and biological processes. The article describes experience in application of contemporary equipment for diagnostics of the social qualities of the people, as well as application features of technical devices, in particular "AR-101", "AR-600", and "Jibo" programmable microcontrollers of android family, and variety of medical, sporting, and household electronic game designers in the activity of pupils, students and educators. The authors consider in detail the design methods, the results of scientific research, and the technology of using several game designers in the express diagnostics.Based on the data, obtained during the study, the authors assess the socialization level of the students of supplementary education institutions, tested at the children's recreation camp "Intelletto", pupils of "Children's University" and "Entertaining Physics" and "Junior Programmer" teenage associations, as well as undergraduate students specializing in pedagogy at the Elabuga Institute of Kazan Federal University (EI KFU)
Nonlinear electrochemical relaxation around conductors
We analyze the simplest problem of electrochemical relaxation in more than
one dimension - the response of an uncharged, ideally polarizable metallic
sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric
field. In order to go beyond the circuit approximation for thin double layers,
our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute
solution theory. Unlike most previous studies, however, we focus on the
nonlinear regime, where the applied voltage across the conductor is larger than
the thermal voltage. In such strong electric fields, the classical model
predicts that the double layer adsorbs enough ions to produce bulk
concentration gradients and surface conduction. Our analysis begins with a
general derivation of surface conservation laws in the thin double-layer limit,
which provide effective boundary conditions on the quasi-neutral bulk. We solve
the resulting nonlinear partial differential equations numerically for strong
fields and also perform a time-dependent asymptotic analysis for weaker fields,
where bulk diffusion and surface conduction arise as first-order corrections.
We also derive various dimensionless parameters comparing surface to bulk
transport processes, which generalize the Bikerman-Dukhin number. Our results
have basic relevance for double-layer charging dynamics and nonlinear
electrokinetics in the ubiquitous PNP approximation.Comment: 25 pages, 17 figures, 4 table
Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity
From the beginning of the subject, calculations of quantum vacuum energies or
Casimir energies have been plagued with two types of divergences: The total
energy, which may be thought of as some sort of regularization of the
zero-point energy, , seems manifestly divergent. And
local energy densities, obtained from the vacuum expectation value of the
energy-momentum tensor, , typically diverge near
boundaries. The energy of interaction between distinct rigid bodies of whatever
type is finite, corresponding to observable forces and torques between the
bodies, which can be unambiguously calculated. The self-energy of a body is
less well-defined, and suffers divergences which may or may not be removable.
Some examples where a unique total self-stress may be evaluated include the
perfectly conducting spherical shell first considered by Boyer, a perfectly
conducting cylindrical shell, and dilute dielectric balls and cylinders. In
these cases the finite part is unique, yet there are divergent contributions
which may be subsumed in some sort of renormalization of physical parameters.
The divergences that occur in the local energy-momentum tensor near surfaces
are distinct from the divergences in the total energy, which are often
associated with energy located exactly on the surfaces. However, the local
energy-momentum tensor couples to gravity, so what is the significance of
infinite quantities here? For the classic situation of parallel plates there
are indications that the divergences in the local energy density are consistent
with divergences in Einstein's equations; correspondingly, it has been shown
that divergences in the total Casimir energy serve to precisely renormalize the
masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics
volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David
Roberts, and Felipe da Ros
Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density
We study two-dimensional, large field theoretic models (Gross-Neveu
model, 't Hooft model) at finite baryon density near the chiral limit. The same
mechanism which leads to massless baryons in these models induces a breakdown
of translational invariance at any finite density. In the chiral limit baryonic
matter is characterized by a spatially varying chiral angle with a wave number
depending only on the density. For small bare quark masses a sine-Gordon kink
chain is obtained which may be regarded as simplest realization of the Skyrme
crystal for nuclear matter. Characteristic differences between confining and
non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig
Diffuse-Charge Dynamics in Electrochemical Systems
The response of a model micro-electrochemical system to a time-dependent
applied voltage is analyzed. The article begins with a fresh historical review
including electrochemistry, colloidal science, and microfluidics. The model
problem consists of a symmetric binary electrolyte between parallel-plate,
blocking electrodes which suddenly apply a voltage. Compact Stern layers on the
electrodes are also taken into account. The Nernst-Planck-Poisson equations are
first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The ``weakly nonlinear''
limit of thin double layers is then analyzed by matched asymptotic expansions
in the small parameter , where is the
screening length and the electrode separation. At leading order, the system
initially behaves like an RC circuit with a response time of
(not ), where is the ionic diffusivity, but nonlinearity
violates this common picture and introduce multiple time scales. The charging
process slows down, and neutral-salt adsorption by the diffuse part of the
double layer couples to bulk diffusion at the time scale, . In the
``strongly nonlinear'' regime (controlled by a dimensionless parameter
resembling the Dukhin number), this effect produces bulk concentration
gradients, and, at very large voltages, transient space charge. The article
concludes with an overview of more general situations involving surface
conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference
Views of the Chiral Magnetic Effect
My personal views of the Chiral Magnetic Effect are presented, which starts
with a story about how we came up with the electric-current formula and
continues to unsettled subtleties in the formula. There are desirable features
in the formula of the Chiral Magnetic Effect but some considerations would lead
us to even more questions than elucidations. The interpretation of the produced
current is indeed very non-trivial and it involves a lot of confusions that
have not been resolved.Comment: 19 pages, no figure; typos corrected, references significantly
updated, to appear in Lect. Notes Phys. "Strongly interacting matter in
magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Ye
Crystalline Color Superconductivity
In any context in which color superconductivity arises in nature, it is
likely to involve pairing between species of quarks with differing chemical
potentials. For suitable values of the differences between chemical potentials,
Cooper pairs with nonzero total momentum are favored, as was first realized by
Larkin, Ovchinnikov, Fulde and Ferrell (LOFF). Condensates of this sort
spontaneously break translational and rotational invariance, leading to gaps
which vary periodically in a crystalline pattern. Unlike the original LOFF
state, these crystalline quark matter condensates include both spin zero and
spin one Cooper pairs. We explore the range of parameters for which crystalline
color superconductivity arises in the QCD phase diagram. If in some shell
within the quark matter core of a neutron star (or within a strange quark star)
the quark number densities are such that crystalline color superconductivity
arises, rotational vortices may be pinned in this shell, making it a locus for
glitch phenomena.Comment: 40 pages, LaTeX with eps figs. v2: New paragraph on Ginzburg-Landau
treatment of LOFF phase in section 5. References added. v3: Small changes
only. Version to appear in Phys. Rev.
Color Superconductivity in Compact Stars
After a brief review of the phenomena expected in cold dense quark matter,
color superconductivity and color-flavor locking, we sketch some implications
of recent developments in our understanding of cold dense quark matter for the
physics of compact stars. We give a more detailed summary of our recent work on
crystalline color superconductivity and the consequent realization that (some)
pulsar glitches may originate in quark matter.Comment: 19 pages. 2 figures. To appear in the proceedings of the ECT Workshop
on Neutron Star Interiors, Trento, Italy, June 2000. Shorter versions
contributed to the proceedings of Strong and Electroweak Matter 2000,
Marseille, France, June 2000 and to the proceedings of Strangeness 2000,
Berkeley, CA, July 2000. KR was the speaker at all three meeting
Study of a novel type of the optical modes in VCSELs
We study novel side-emitting modes in VCSEL microcavities. These modes correspond to Ï-shaped propagation along the mesa diameter, reflection from angled mesa walls and bottom Bragg reflector. We believe this study of Ï-modes is important for optimization of VCSEL design for improvement of efficiency
- âŠ