17 research outputs found
Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters
Three-dimensional lanthanide-organic frameworks formulated as (CH3)2NH2[Ln(pydc)2] · 1/2H2O [Ln3+ ) Eu3+ (1a)
or Er3+ (1b); pydc2- corresponds to the diprotonated residue of 2,5-pyridinedicarboxylic acid (H2pydc)], [Er4(OH)4(pydc)4(H2O)3] ·H2O
(2), and [PrIII
2PrIV
1.25O(OH)3(pydc)3] (3) have been isolated from typical solvothermal (1a and 1b in N,N-dimethylformamide -
DMF) and hydrothermal (2 and 3) syntheses. Materials were characterized in the solid state using single-crystal X-ray diffraction,
thermogravimetric analysis, vibrational spectroscopy (FT-IR and FT-Raman), electron microscopy, and CHN elemental analysis.
While synthesis in DMF promotes the formation of centrosymmetric dimeric units, which act as building blocks in the construction
of anionic ∞
3{[Ln(pydc)2]-} frameworks having the channels filled by the charge-balancing (CH3)2NH2
+ cations generated in situ by
the solvolysis of DMF, the use of water as the solvent medium promotes clustering of the lanthanide centers: structures of 2 and 3
contain instead tetrameric [Er4(μ3-OH)4]8+ and hexameric |Pr6(μ3-O)2(μ3-OH)6| clusters which act as the building blocks of the networks,
and are bridged by the H2-xpydcx- residues. It is demonstrated that this modular approach is reflected in the topological nature of
the materials inducing 4-, 8-, and 14-connected uninodal networks (the nodes being the centers of gravity of the clusters) with
topologies identical to those of diamond (family 1), and framework types bct (for 2) and bcu-x (for 3), respectively. The
thermogravimetric studies of compound 3 further reveal a significant weight increase between ambient temperature and 450 °C with
this being correlated with the uptake of oxygen from the surrounding environment by the praseodymium oxide inorganic core
Synergy in photomagnetic/ferromagnetic sub-50 nm core-multishell nanoparticles
Based on nickel hexacyanidochromate and cobalt hexacyanidoferrate Prussian blue analogues, two series of photomagnetic/ferromagnetic sub-50 nm core multishell coordination nanoparticles have been synthesized in a surfactant-free one-pot multistep procedure with good control over the dispersity (10% standard deviation) and good agreement with the targeted size at each step. The composition and the valence state of each shell have been probed by different techniques that have revealed the predominance of Co(II)-NC-Fe(III) pairs in a series synthesized without alkali while Co(III)-NC-Fe(II) photoswitchable pairs have been successfully obtained in the photoactive coordination nanoparticles by control of Cs(+) insertion. When compared, the photoinduced behavior of the latter compound is in good agreement with that of the model one. Exchange coupling favors a uniform reversal of the magnetization of the heterostructured nanoparticles, with a large magnetization brought by a soft ferromagnetic shell and a large coercivity due to a harder photomagnetic shell. Moreover, a persistent increase of the photoinduced magnetization is observed for the first time up to the ordering temperature (60 K) of the ferromagnetic component because of a unique synergy