1,165 research outputs found

    STAT 216.01: Introduction to Statistics

    Get PDF

    STAT 216.02: Introduction to Statistics

    Get PDF

    Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory

    Full text link
    Halvorson and Clifton have given a mathematical reconstruction of Bohr's reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr's reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, to a general formulation of EPR states applicable to both non-relativistic quantum mechanics and algebraic quantum field theory; and we clarify the elements of reality in EPR states in terms of Bohr's requirements of classicality and objectivity, in a general formulation of algebraic quantum theory.Comment: 13 pages, Late

    Non-singular inflationary universe from polymer matter

    Full text link
    We consider a polymer quantization of a free massless scalar field in a homogeneous and isotropic cosmological spacetime. This quantization method assumes that field translations are fundamentally discrete, and is related to but distinct from that used in loop quantum gravity. The semi-classical Friedman equation yields a universe that is non-singular and non-bouncing, without quantum gravity. The model has an early de Sitter-like inflationary phase with sufficient expansion to resolve the horizon and entropy problems, and a built in mechanism for a graceful exit from inflation.Comment: 4 pages, 1 figure; v2 clarifications added, reference update

    Semiclassical states for quantum cosmology

    Get PDF
    In a metric variable based Hamiltonian quantization, we give a prescription for constructing semiclassical matter-geometry states for homogeneous and isotropic cosmological models. These "collective" states arise as infinite linear combinations of fundamental excitations in an unconventional "polymer" quantization. They satisfy a number of properties characteristic of semiclassicality, such as peaking on classical phase space configurations. We describe how these states can be used to determine quantum corrections to the classical evolution equations, and to compute the initial state of the universe by a backward time evolution.Comment: 13 page

    UMP clinched 9 medals at BioMalaysia 2011

    Get PDF
    Universiti Malaysia Pahang (UMP) continued to record successful achievements by garnering a gold medal, a silver medal and seven bronze medals at the BioMalaysia 2011 and Pacific RIM Summit on Industry and BioEnergy 2011 in Kuala Lumpur recently. The event was officially opened by Prime Minister Dato’ Sri Mohd Najib Tun Razak at Kuala Lumpur Convention Centre on November 21, 2011

    Effective Polymer Dynamics of D-Dimensional Black Hole Interiors

    Full text link
    We consider two different effective polymerization schemes applied to D-dimensional, spherically symmetric black hole interiors. It is shown that polymerization of the generalized area variable alone leads to a complete, regular, single-horizon spacetime in which the classical singularity is replaced by a bounce. The bounce radius is independent of rescalings of the homogeneous internal coordinate, but does depend on the arbitrary fiducial cell size. The model is therefore necessarily incomplete. It nonetheless has many interesting features: After the bounce, the interior region asymptotes to an infinitely expanding Kantowski-Sachs spacetime. If the solution is analytically continued across the horizon, the black hole exterior exhibits asymptotically vanishing quantum-corrections due to the polymerization. In all spacetime dimensions except four, the fall-off is too slow to guarantee invariance under Poincare transformations in the exterior asymptotic region. Hence the four-dimensional solution stands out as the only example which satisfies the criteria for asymptotic flatness. In this case it is possible to calculate the quantum-corrected temperature and entropy. We also show that polymerization of both phase space variables, the area and the conformal mode of the metric, generically leads to a multiple horizon solution which is reminiscent of polymerized mini-superspace models of spherically symmetric black holes in Loop Quantum Gravity.Comment: 14 pages, 4 figures. Added discussion about the dependency on auxiliary structures. Matches with the published versio

    Quantity and Quality Limit Detritivore Growth: Mechanisms Revealed by Ecological Stoichiometry and Co-Limitation Theory

    Get PDF
    Resource quantity and quality are fundamental bottom-up constraints on consumers. Best understood in autotroph-based systems, co-occurrence of these constraints may be common but remains poorly studied in detrital-based systems. Here, we used a laboratory growth experiment to test limitation of the detritivorous caddisfly larvae Pycnopsyche lepida across a concurrent gradient of oak litter quantity (food supply) and quality (phosphorus : carbon [P:C ratios]). Growth increased simultaneously with quantity and quality, indicating co-limitation across the resource gradients. We merged approaches of ecological stoichiometry and co-limitation theory, showing how co-limitation reflected shifts in C and P acquisition throughout homeostatic regulation. Increased growth was best explained by elevated consumption rates and improved P assimilation, which both increased with elevated quantity and quality. Notably, C assimilation efficiencies remained unchanged and achieved maximum 18% at low quantity despite pronounced C limitation. Detrital C recalcitrance and substantive post-assimilatory C losses probably set a minimum quantity threshold to achieve positive C balance. Above this threshold, greater quality enhanced larval growth probably by improving P assimilation toward P-intensive growth. We suggest this interplay of C and P acquisition contributes to detritivore co-limitation, highlighting quantity and quality as potential simultaneous bottom-up controls in detrital-based ecosystems, including under anthropogenic change like nutrient enrichment
    • …
    corecore