131,212 research outputs found

    Reversal Modes of Simulated Iron Nanopillars in an Obliquely Oriented Field

    Full text link
    Stochastic micromagnetic simulations are employed to study switching in three-dimensional magnetic nanopillars exposed to highly misaligned fields. The switching appears to proceed through two different decay modes, characterized by very different average lifetimes and different average values of the transverse magnetization components.Comment: 3 pages, 4 figure

    Hierarchical approach to 'atomistic' 3-D MOSFET simulation

    Get PDF
    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-μm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations

    Study of the Staebler-Wronski degradation effect in a-Si:H based p-i-n solar cell

    Get PDF
    Conversion of solar energy into electricity using environmentally safe and clean photovoltaic methods to supplement the ever increasing energy needs has been a cherished goal of many scientists and engineers around the world. Photovoltaic solar cells on the other hand, have been the power source for satellites ever since their introduction in the early sixties. For widespread terrestrial applications, however, the cost of photovoltaic systems must be reduced considerably. Much progress has been made in the recent past towards developing economically viable terrestrial systems, and the future looks highly promising. Thin film solar cells offer cost reductions mainly from their low processing cost, low material cost, and choice of low cost substrates. These are also very attractive for space applications because of their high power densities (power produced per kilogram of solar cell pay load) and high radiation resistance. Amorphous silicon based solar cells are amongst the top candidates for economically viable terrestrial and space based power generation. Despite very low federal funding during the eighties, amorphous silicon solar cell efficiencies have continually been improved - from a low 3 percent to over 13 percent now. Further improvements have been made by the use of multi-junction tandem solar cells. Efficiencies close to 15 percent have been achieved in several labs. In order to be competitive with fossil fuel generated electricity, it is believed that module efficiency of 15 percent or cell efficiency of 20 percent is required. Thus, further improvements in cell performance is imperative. One major problem that was discovered almost 15 years ago in amorphous silicon devices is the well known Staebler-Wronski Effect. Efficiency of amorphous silicon solar cells was found to degrade upon exposure to sunlight. Until now their is no consensus among the scientists on the mechanism for this degradation. Efficiency may degrade anywhere from 10 percent to almost 50 percent within the first few months of operation. In order to improve solar cell efficiencies, it is clear that the cause or causes of such degradation must be found and the processing conditions altered to minimize the loss in efficiency. This project was initiated in 1987 to investigate a possible link between metallic impurities, in particular, Ag, and this degradation. Such a link was established by one of the NASA scientists for the light induced degradation of n+/p crystalline silicon solar cells

    Field Quantization, Photons and Non-Hermitean Modes

    Get PDF
    Field quantization in three dimensional unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes in both the cavity and external regions. The cavity non-Hermitean modes (NHM) are treated using the paraxial and monochromaticity approximations. The NHM bi-orthogonality relationships are used in a standard canonical quantization procedure based on introducing generalised coordinates and momenta for the electromagnetic (EM) field. The quantum EM field is equivalent to a set of quantum harmonic oscillators (QHO), associated with either the cavity or the external region NHM. This confirms the validity of the photon model in unstable optical systems, though the annihilation and creation operators for each QHO are not Hermitean adjoints. The quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which is sum of independent QHO Hamiltonians for each NHM, but the external field Hamiltonian also includes a coupling term responsible for external NHM photon exchange processes. Cavity energy gain and loss processes is associated with the non-commutativity of cavity and external region operators, given in terms of surface integrals involving cavity and external region NHM functions on the cavity-external region boundary. The spontaneous decay of a two-level atom inside an unstable cavity is treated using the essential states approach and the rotating wave approximation. Atomic transitions leading to cavity NHM photon absorption have a different coupling constant to those leading to photon emission, a feature resulting from the use of NHM functions. Under certain conditions the decay rate is enhanced by the Petermann factor.Comment: 38 pages, tex, 2 figures, ps. General expression for decay rate added. To be published in Journal of Modern Optic

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    A Scintillating Fiber Hodoscope for a Bremstrahlung Luminosity Monitor at an Electron-Positron Collider

    Full text link
    The performance of a scintillating fiber (2mm diameter) position sensitive detector (4.8×4.84.8 \times 4.8 cm2^2 active area) for the single bremstrahlung luminosity monitor at the VEPP-2M electron-positron collider in Novosibirsk, Russia is described. Custom electronics is triggered by coincident hits in the X and Y planes of 24 fibers each, and reduces 64 PMT signals to a 10 bit (X,Y) address. Hits are accumulated (10 kHz) in memory and display (few Hz) the VEPP-2M collision vertex. Fitting the strongly peaked distribution ( \sim 3-4 mm at 1.6m from the collision vertex of VEPP-2M ) to the expected QED angular distribution yields a background in agreement with an independent determination of the VEPP-2M luminosity.Comment: LaTeX with REVTeX style and options: multicol,aps. 8 pages, postscript figures separate from text. Accepted in Review of Scientific Instruments (~ Aug 1996

    Cyclic and constant temperature aging effects on magnetic materials for inverters and converters

    Get PDF
    Cyclic and constant temperature aging effects on magnetic materials for inverters and converter

    Observing Non-Gaussian Sources in Heavy-Ion Reactions

    Get PDF
    We examine the possibility of extracting non-Gaussian sources from two-particle correlations in heavy-ion reactions. Non-Gaussian sources have been predicted in a variety of model calculations and may have been seen in various like-meson pair correlations. As a tool for this investigation, we have developed an improved imaging method that relies on a Basis spline expansion of the source functions with an improved implementation of constraints. We examine under what conditions this improved method can distinguish between Gaussian and non-Gaussian sources. Finally, we investigate pion, kaon, and proton sources from the p-Pb reaction at 450 GeV/nucleon and from the S-Pb reaction at 200 GeV/nucleon studied by the NA44 experiment. Both the pion and kaon sources from the S-Pb correlations seem to exhibit a Gaussian core with an extended, non-Gaussian halo. We also find evidence for a scaling of the source widths with particle mass in the sources from the p-Pb reaction.Comment: 16 pages, 15 figures, 5 tables, uses RevTex3.
    corecore