1,196 research outputs found

    Magnetization reversal and nonexponential relaxation via instabilities of internal spin waves in nanomagnets

    Full text link
    A magnetic particle with atomic spins ordered in an unstable direction is an example of a false vacuum that decays via excitation of internal spin waves. Coupled evolution of the particle's magnetization (or the vacuum state) and spin waves, considered in the time-dependent vacuum frame, leads to a peculiar relaxation that is very fast at the beginning but slows down to a nonexponential long tail at the end. The two main scenarios are linear and exponential spin-wave instabilities. For the former, the longitudinal and transverse relaxation rates have been obtained analytically. Numerical simulations show that the particle's magnetization strongly decreases in the middle of reversal and then recovers.Comment: 6 EPL pages, 4 figure

    Thermal Casimir force between nanostructured surfaces

    Full text link
    We present detailed calculations for the Casimir force between a plane and a nanostructured surface at finite temperature in the framework of the scattering theory. We then study numerically the effect of finite temperature as a function of the grating parameters and the separation distance. We also infer non-trivial geometrical effects on the Casimir interaction via a comparison with the proximity force approximation. Finally, we compare our calculations with data from experiments performed with nanostructured surfaces

    Quantum limits in interferometric measurements

    Full text link
    Quantum noise limits the sensitivity of interferometric measurements. It is generally admitted that it leads to an ultimate sensitivity, the ``standard quantum limit''. Using a semi-classical analysis of quantum noise, we show that a judicious use of squeezed states allows one in principle to push the sensitivity beyond this limit. This general method could be applied to large scale interferometers designed for gravitational wave detection.Comment: 4 page

    Casimir torque between corrugated metallic plates

    Full text link
    We consider two parallel corrugated plates and show that a Casimir torque arises when the corrugation directions are not aligned. We follow the scattering approach and calculate the Casimir energy up to second order in the corrugation amplitudes, taking into account nonspecular reflections, polarization mixing and the finite conductivity of the metals. We compare our results with the proximity force approximation, which overestimates the torque by a factor 2 when taking the conditions that optimize the effect. We argue that the Casimir torque could be measured for separation distances as large as 1 ÎĽm.\mu{\rm m}.Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding

    Roughness correction to the Casimir force : Beyond the Proximity Force Approximation

    Full text link
    We calculate the roughness correction to the Casimir effect in the parallel plates geometry for metallic plates described by the plasma model. The calculation is perturbative in the roughness amplitude with arbitrary values for the plasma wavelength, the plate separation and the roughness correlation length. The correction is found to be always larger than the result obtained in the Proximity Force Approximation.Comment: 7 pages, 3 figures, v2 with minor change

    Lateral Casimir force beyond the Proximity Force Approximation

    Full text link
    We argue that the appropriate variable to study a non trivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the Proximity Force Approximation (PFA). The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analysis shows that in realistic experimental situations the Proximity Force Approximation overestimates the force by up to 30%.Comment: 4 pages. Identical to v1, which was accidentally replaced by a different paper (quant-ph/0610026

    Casimir effect with rough metallic mirrors

    Full text link
    We calculate the second order roughness correction to the Casimir energy for two parallel metallic mirrors. Our results may also be applied to the plane-sphere geometry used in most experiments. The metallic mirrors are described by the plasma model, with arbitrary values for the plasma wavelength, the mirror separation and the roughness correlation length, with the roughness amplitude remaining the smallest length scale for perturbation theory to hold. From the analysis of the intracavity field fluctuations, we obtain the Casimir energy correction in terms of generalized reflection operators, which account for diffraction and polarization coupling in the scattering by the rough surfaces. We present simple analytical expressions for several limiting cases, as well as numerical results that allow for a reliable calculation of the roughness correction in real experiments. The correction is larger than the result of the Proximity Force Approximation, which is obtained from our theory as a limiting case (very smooth surfaces).Comment: 16 page

    Quantum noise in ideal operational amplifiers

    Full text link
    We consider a model of quantum measurement built on an ideal operational amplifier operating in the limit of infinite gain, infinite input impedance and null output impedance and with a feddback loop. We evaluate the intensity and voltage noises which have to be added to the classical amplification equations in order to fulfill the requirements of quantum mechanics. We give a description of this measurement device as a quantum network scattering quantum fluctuations from input to output ports.Comment: 4 pages, 2 figures, RevTe

    Bounds on gravitational wave backgrounds from large distance clock comparisons

    Full text link
    Our spacetime is filled with gravitational wave backgrounds that constitute a fluctuating environment created by astrophysical and cosmological sources. Bounds on these backgrounds are obtained from cosmological and astrophysical data but also by analysis of ranging and Doppler signals from distant spacecraft. We propose here a new way to set bounds on those backgrounds by performing clock comparisons between a ground clock and a remote spacecraft equipped with an ultra-stable clock, rather than only ranging to an onboard transponder. This technique can then be optimized as a function of the signal to be measured and the dominant noise sources, leading to significant improvements on present bounds in a promising frequency range where different theoretical models are competing. We illustrate our approach using the SAGAS project which aims to fly an ultra stable optical clock in the outer solar system.Comment: 10 pages, 8 figures, minor amendment

    Vacuum induced torque between corrugated metallic plates

    Full text link
    We study the torque arising between two corrugated metallic plates due to the interaction with electromagnetic vacuum. This Casimir torque can be measured with torsion pendulum techniques for separation distances as large as 1ÎĽ\mum. It allows one to probe the nontrivial geometry dependence of the Casimir energy in a configuration which can be evaluated theoretically with accuracy. In the optimal experimental configuration, the commonly used proximity force approximation turns out to overestimate the torque by a factor 2 or larger.Comment: 7 pages, 4 figures, to appear in Europhysics Letters. Technical problem with eps file for figure 4 was fixe
    • …
    corecore