2,378 research outputs found

    Haldane Sashes in Quantum Hall Spectra

    Full text link
    We show that the low-temperature sash features in the lowest Landau-level (LLL) tunneling density-of-states (TDOS) recently discovered by Dial and Ashoori are intimately related to the discrete Haldane-pseudopotential interaction energy scales that govern fractional quantum Hall physics. Our analysis is based on expressions for the tunneling density-of-states which become exact at filling factors close to ν=0\nu=0 and ν=1\nu=1, where the sash structure is most prominent. We comment on other aspects of LLL correlation physics that can be revealed by accurate temperature-dependent tunneling data.Comment: Added referenc

    Spin-Seebeck effect in a strongly interacting Fermi gas

    Full text link
    We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering

    Luttinger Liquid at the Edge of a Graphene Vacuum

    Full text link
    We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a non-chiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the non-interacting edges states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling I−VI-V with a non-integral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state when the edge confinement is sufficiently strong relative to the interaction energy scale.Comment: 4 pages, 3 figure

    Heat pumping with optically driven excitons

    Full text link
    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible

    Quantum heat transfer: A Born Oppenheimer method

    Full text link
    We develop a Born-Oppenheimer type formalism for the description of quantum thermal transport along hybrid nanoscale objects. Our formalism is suitable for treating heat transfer in the off-resonant regime, where e.g., the relevant vibrational modes of the interlocated molecule are high relative to typical bath frequencies, and at low temperatures when tunneling effects dominate. A general expression for the thermal energy current is accomplished, in the form of a generalized Landauer formula. In the harmonic limit this expression reduces to the standard Landauer result for heat transfer, while in the presence of nonlinearities multiphonon tunneling effects are realized

    Interaction-Enhanced Coherence Between Two-Dimensional Dirac Layers

    Full text link
    We estimate the strength of interaction-enhanced coherence between two graphene or topological insulator surface-state layers by solving imaginary-axis gap equations in the random phase approximation. Using a self-consistent treatment of dynamic screening of Coulomb interactions in the gapped phase, we show that the excitonic gap can reach values on the order of the Fermi energy at strong interactions. The gap is discontinuous as a function of interlayer separation and effective fine structure constant, revealing a first order phase transition between effectively incoherent and interlayer coherent phases. To achieve the regime of strong coherence the interlayer separation must be smaller than the Fermi wavelength, and the extrinsic screening of the medium embedding the Dirac layers must be negligible. In the case of a graphene double-layer we comment on the supportive role of the remote π\pi-bands neglected in the two-band Dirac model.Comment: 14 pages, 9 figure

    Effect of Coulomb interactions on the optical properties of doped graphene

    Full text link
    Recent optical conductivity experiments of doped graphene in the infrared regime reveal a strong background in the energy region between the intra and interband transitions difficult to explain within conventional pictures. We propose a phenomenological model taking into account the marginal Fermi liquid nature of the quasiparticles in graphene near the neutrality point that can explain qualitatively the observed features. We also study the electronic Raman signal and suggest that it will also be anomalous.Comment: 4 pages, 2 figure

    Electron-Electron Interactions in the Vacuum Polarization of Graphene

    Full text link
    We discuss the effect of electron-electron interactions on the static polarization properties of graphene beyond RPA. Divergent self-energy corrections are naturally absorbed into the renormalized coupling constant α\alpha. We find that the lowest order vertex correction, which is the first non-trivial correlation contribution, is finite, and about 30% of the RPA result at strong coupling α∼1\alpha \sim 1. The vertex correction leads to further reduction of the effective charge. Finite contributions to dielectric screening are expected in all orders of perturbation theory.Comment: 5 pages, 2 figures; published versio

    Edge Magnetoplasmons in Quantum Hall Line Junction Systems

    Full text link
    A quantum Hall line junction system consists of a one-dimensional Luttinger liquid (LL) and two chiral channels that allow density waves incident upon and reflected by the LL to be measured separately. We demonstrate that interactions in a quantum Hall line junction system can be probed by studying edge magnetoplasmon absorption spectra and their polarization dependences. Strong interactions in the junction lead to collective modes that are isolated in either Luttinger liquid or contact subsystems.Comment: 4 pages, 3 figures, submitted to Phys. Rev. B Rapid Communicatio

    Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry

    Full text link
    Theoretical studies of a planar tunnel junction between two superconductors with antisymmetric spin-orbit coupling are presented. The half-space Green's function for such a superconductor is determined. This is then used to derive expressions for the dissipative current and the Josephson current of the junction. Numerical results are presented in the case of the Rashba spin-orbit coupling, relevant to the much studied compound CePt3_3Si. Current-voltage diagrams, differential conductance and the critical Josephson current are presented for different crystallographic orientations and different weights of singlet and triplet components of the pairing state. The main conclusion is that Josephson junctions with different crystallographic orientations may provide a direct connection between unconventional pairing in superconductors of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure
    • …
    corecore