776 research outputs found

    Differentiating between models of Epothilone binding to microtubules using tubulin mutagenesis, cytotoxicity, and molecular modeling

    Get PDF
    This is the peer reviewed version of the following article: Entwistle, R. A., Rizk, R. S., Cheng, D. M., Lushington, G. H., Himes, R. H., & Gupta, M. L. (2012). Differentiating between models of Epothilone binding to microtubules using tubulin mutagenesis, cytotoxicity, and molecular modeling. ChemMedChem, 7(9), 1580–1586. http://doi.org/10.1002/cmdc.201200286, which has been published in final form at doi.org/10.1002/cmdc.201200286. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Microtubule stabilizers are powerful anti-mitotic compounds and represent a proven cancer treatment strategy. Several classes of compounds in clinical use or trials, such as the taxanes and epothilones, bind to the same region of β-tubulin. Determining how these molecules interact with tubulin and stabilize microtubules is important both for understanding the mechanism of action and enhancing chemotherapeutic potential, e.g. reducing side effects, increasing solubility, and overcoming resistance. Structural studies using nonpolymerized tubulin or stabilized polymers have produced different models of epothilone binding. Here, we used directed mutagenesis of the binding site on Saccharomyces cerevisiae β-tubulin to analyze interactions between Epothilone B and its biologically relevant substrate, dynamic microtubules. Five engineered amino acid changes contributed to a 125-fold increase in Epothilone B cytotoxicity independent of inherent microtubule stability. The mutagenesis of endogenous β-tubulin was done in otherwise isogenic strains. This facilitated the correlation of amino acid substitutions with altered cytotoxicity using molecular mechanics simulations. The results, which are based on the interaction between Epothilone B and dynamic microtubules, most strongly support the binding mode determined by NMR spectroscopy-based studies. This work establishes a system for discriminating between potential binding modes and among various compounds and/or analogues using a sensitive biological activity-based readout

    Increasing weight-bearing physical activity and calcium-rich foods to promote bone mass gains among 9–11 year old girls: outcomes of the Cal-Girls study

    Get PDF
    BACKGROUND: A two-year, community-based, group-randomized trial to promote bone mass gains among 9–11 year-old girls through increased intake of calcium-rich foods and weight-bearing physical activity was evaluated. METHODS: Following baseline data collection, 30 5th-grade Girl Scout troops were randomized to a two-year behavioral intervention program or to a no-treatment control group. Evaluations were conducted at baseline, one year, and two years. Measures included bone mineral content, density, and area (measured by DXA), dietary calcium intake (24-hour recall), and weight-bearing physical activity (physical activity checklist interview). Mixed-model regression was used to evaluate treatment-related changes in bone mineral content (g) for the total body, lumbar spine (L1-L4), proximal femur, one-third distal radius, and femoral neck. Changes in eating and physical activity behavioral outcomes were examined. RESULTS: Although the intervention was implemented with high fidelity, no significant intervention effects were observed for total bone mineral content or any specific bone sites. Significant intervention effects were observed for increases in dietary calcium. No significant intervention effects were observed for increases in weight-bearing physical activity. CONCLUSION: Future research needs to identify the optimal dosage of weight-bearing physical activity and calcium-rich dietary behavior change required to maximize bone mass gains in pre-adolescent and adolescent girls

    In utero exposure to cigarette smoking, environmental tobacco smoke and reproductive hormones in US girls approaching puberty

    Get PDF
    BACKGROUND/AIMS: Evidence is unclear whether prenatal smoking affects age at menarche and pubertal development, and its impact upon hormones has not been well studied. We aim to identify potential pathways through which prenatal smoking and environmental tobacco smoke (ETS) affect reproductive hormones in girls approaching puberty. METHODS: We examined the association between prenatal smoking, current ETS and luteinizing hormone (LH) and inhibin B (InB) in 6- to 11-year-old girls in the 3rd National Health and Nutrition Examination Survey, 1988-1994. Parents/guardians completed interviewer-assisted questionnaires on health and demographics at the time of physical examination. Residual blood samples were analyzed for reproductive hormones in 2008. RESULTS: Of 660 girls, 19 and 39% were exposed to prenatal smoke and current ETS, respectively. Accounting for multiple pathways in structural equation models, prenatally exposed girls had significantly lower LH (β = -0.205 log-mIU/ml, p < 0.0001) and InB (β = -0.162, log-pg/ml, p < 0.0001). Prenatal smoking also influenced LH positively and InB negatively indirectly through BMI-for-age. ETS was positively associated with LH, but not with InB. CONCLUSION: Exposure to maternal smoking may disrupt reproductive development manifesting in altered hormone levels near puberty

    Fisheries Exclusion Zones: Value and its sensitivity to data uncertainty

    Get PDF
    This paper focuses on the findings of the project that pertain particularly to the determination of the value of fisheries exclusion zones and the sensitivity of value estimation to data uncertainty. It necessarily draws on both the lite rature review and the case studies and in terms of its content extracts, presents and su mmarises the pertinent material therein covered. By collating this material a more directed consid eration of the topic of value is facilitated and the findings of the study as a whole more clear ly highlighted, and through consideration of uncertainty, also qualified

    (3R,5S,7as)-(3,5-bis(4-Fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol: A Novel Neuroprotective Agent

    Get PDF
    Compounds that interact with microtubules, such as paclitaxel, have been shown to possess protective properties against β-amyloid (Aβ)-induced neurodegeneration associated with Alzheimer's disease. In this work, the novel agent (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol was investigated for effectiveness in protecting neurons against several toxic stimuli and its interaction with the microtubule network. Exposure of neuronal cultures to Aβ peptide in the presence of 5 nM (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol resulted in a 50% increase in survival. Neuronal cultures treated with other toxic stimuli such as staurosporine, thapsigargin, paraquat and H2O2 showed significantly enhanced survival in the presence of (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol. Microtubule binding and tubulin assembly studies revealed differences compared to paclitaxel, but confirmed the interaction of (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol with microtubules. Furthermore, in vitro studies using bovine brain microvessel endothelial cells experiments suggest that (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol can readily cross the blood-brain barrier in a passive manner

    Poboljšanje fizičko-mehaničkih svojstava karbamazepina prekristalizacijom pri različitim pH

    Get PDF
    The morphology of crystals has an appreciable impact on the physicochemical properties of drugs. Drug properties such as flowability, dissolution, hardness and bioavailability may be affected by crystallinity behaviors of drugs. The objective of this study was to achieve improved physicomechanical properties of carbamazepine powder through recrystallization from aqueous solutions at different pH values. For this purpose, carbamazapine was recrystallized from aqueous solutions at different pH values (1, 7, 11). The morphology of crystals was investigated using scanning electron microscopy; X-ray powder diffraction (XRPD) was used to identify polymorphism; thermodynamic properties were analyzed using differential scanning calorimetery (DSC). Dissolution was determined using USP dissolution apparatus. Mechanical behavior of recrystallized carbamazepine powders was investigated by making tablets under different compaction pressures and measuring their hardness. SEM studies showed that carbamazepine crystallization in different media affected the morphology and size of carbamazepine crystals. The shape of carbamazepine crystals changed from flaky or thin plate-like to needle-shaped. XRPD and DSC results ruled out any crystallinity changes occurring due to the temperature or pH of crystallization media. The crushing strength of tablets indicated that all the recrystallized carbamazepine samples had better compactibility than the original carbamazepine powder. In vitro dissolution studies of carbamazepine samples showed a higher dissolution rate of carbamazepine crystals obtained from media with pH 11 and 1. Carbamazepine particles recrystallized from aqueous solutions of different pH values (all media) appeared to have superior mechanical properties to those of the original carbamazepine sample.Morfologija kristala ima značajan utjecaj na fizičko-mehanička svojstva lijekova. Kristaliničnost može utjecati na tečnost, oslobađanje, tvrdoću i bioraspoloživost lijekova. Cilj ovog rada bio je poboljšati fizičko-mehanička svojstva praha karbamazepina prekristalizacijom iz vodenih otopina pri različitim pH vrijednostima (1, 7 i 11). Fizičko-mehanička svojstva prekristaliziranog karbamazepina određivana su na sljedeći način: morfologija kristala ispitivana je pretražnom elektronskom mikroskopijom, polimorfi su identificirani rendgenskom difrakcijom praha (XRPD), a termodinamička svojstva analizirana su diferencijalnom pretražnom kalorimetrijom (DSC). Topljivost je određena pomoću aparata prema USP. Mehanička svojstva prekristaliziranog karbamazepina ispitivana su tijekom tabletiranja pri različitim tlakovima i mjerenjem tvrdoće nastalih tableta. SEM ispitivanja pokazala su da kristalizacija karbamazepina iz različitih medija utječe na morfologiju i veličinu kristala. Oblik kristala mijenjao se od pahuljastog ili pločastog do igličastog. Rezultati dobiveni XRPD i DSC metodama isključili su promjene kristaliničnosti zbog temperature ili pH medija. Mjerenjem lomljivosti tableta utvrđeno je da su svi prekristalizirani uzorci karbamazepina bili kompaktniji od polaznog praškastog uzorka. Ispitivanja topljivosti in vitro pokazala su da su kristali dobiveni iz otopine s pH 11 i 1 topljiviji. Uzorci karbamazepina dobiveni prekristalizacijom iz vodenih otopina različite pH vrijednosti imali su bolja mehanička svojstva od originalnog uzorka karbamazepina

    Total Synthesis and Evaluation of c26-Hydroxyepothilone D Derivatives for Photoaffinity Labeling of β-Tubulin

    Get PDF
    Three photaffinity labeled derivatives of epothilone D were prepared by total synthesis, using efficient novel asymmetric synthesis methods for the preparation of two important synthetic building blocks. The key step for the asymmetric synthesis of (S,E)-3-(tert-butyldimethylsilyloxy)-4-methyl-5-(2-methylthiazol-4-yl)pent-4-enal involved a ketone reduction with (R)-Me-CBS-oxazaborolidine. For the synthesis of (5S)-5,7-di-[(tert-butyldimethylsilyl)oxy]-4,4-dimethylheptan-3-one an asymmetric Noyori reduction of a β-ketoester was employed. The C26 hydroxyepothilone D derivative was constructed following a well-established total synthesis strategy and the photoaffinity labels were attached to the C26 hydroxyl group. The photoaffinity analogues were tested in a tubulin assembly assay and for cytotoxicity against MCF-7 and HCT-116 cancer cell lines. The 3- and 4-azidobenzoic acid analogues were found to be as active as epothilone B in a tubulin assembly assay, but demonstrated significantly reduced cellular cytotoxicity compared to epothilone B. The benzophenone analogue was inactive in both assays. Docking and scoring studies were conducted that suggested that the azide analogues can bind to the epothilone binding site, but that the benzophenone analogue undergoes a sterically driven ligand rearrangement that interrupts all hydrogen bonding and therefore protein binding. Photoaffinity labeling studies with the 3-azidobenzoic acid derivative did not identify any covalently labeled peptide fragments, suggesting that the phenylazido side chain was predominantly solvent-exposed in the bound conformation

    Total synthesis and evaluation of 22-(3-azidobenzoyloxy)methyl epothilone C for photoaffinity labeling of β-tubulin

    Get PDF
    The total synthesis of 22-(3-azidobenzoyloxy)methyl epothilone C is described as a potential photoaffinity probe to elucidate the β-tubulin binding site. A sequential Suzuki-aldol-Yamaguchi macrolactonization strategy was utilized employing a novel derivatized C1–C6 fragment. The C22-functionalized analog exhibited good activity in microtubule assembly assays, but cytotoxicity was significantly reduced. Molecular modeling simulations indicated that excessive steric bulk in the C22 position is accommodated by the large hydrophobic pocket of the binding site. Photoaffinity labeling studies were inconclusive suggesting non-specific labeling
    corecore