62,936 research outputs found
Temperature dependent deviations from ideal quantization of plateau conductances in GaAs quantum point contacts
We present detailed experimental studies of the temperature dependence of the
plateau conductance of GaAs quantum point contacts in the temperature range
from 0.3 K to 10 K. Due to a strong lateral confinement produced by a
shallow-etching technique we are able to observe the following unexpected
feature: a linear temperature dependence of the measured mid-plateau
conductance. We discuss an interpretation in terms of a temperature dependent,
intrinsic series resistance, due to non-ballistic effects in the 2D-1D
transition region. These results have been reproduced in several samples from
different GaAs/GaAlAs heterostructures and observed in different experimental
set-ups.Comment: 7 pages, 6 figures; to appear in proceedings of ICPS 2002, Edinburg
Massive sterile neutrinos as warm Dark Matter
We show that massive sterile neutrinos mixed with the ordinary ones may be
produced in the early universe in the right amount to be natural warm dark
matter particles. Their mass should be below 40 keV and the corresponding
mixing angles sin^2 2\theta > 10^{-11} for mixing with \nu_\mu or \nu_\tau,
while mixing with \nu_e is slightly stronger bounded with mass less than 30
keV.Comment: 13 pages, 1 figure, references and acknowledgement added; discussion
on SN bound updated, matches version in Astropart.phy
Method for locating low-energy solutions within DFT+U
The widely employed DFT+U formalism is known to give rise to many self-consistent yet energetically distinct solutions in correlated systems, which can be highly problematic for reliably predicting the thermodynamic and physical properties of such materials. Here we study this phenomenon in the bulk materials UO_2, CoO, and NiO, and in a CeO_2 surface. We show that the following factors affect which self-consistent solution a DFT+U calculation reaches: (i) the magnitude of U; (ii) initial correlated orbital occupations; (iii) lattice geometry; (iv) whether lattice symmetry is enforced on the charge density; and (v) even electronic mixing parameters. These various solutions may differ in total energy by hundreds of meV per atom, so identifying or approximating the ground state is critical in the DFT+U scheme. We propose an efficient U-ramping method for locating low-energy solutions, which we validate in a range of test cases. We also suggest that this method may be applicable to hybrid functional calculations
Why does the Jeans Swindle work?
When measuring the mass profile of any given cosmological structure through
internal kinematics, the distant background density is always ignored. This
trick is often refereed to as the "Jeans Swindle". Without this trick a
divergent term from the background density renders the mass profile undefined,
however, this trick has no formal justification. We show that when one includes
the expansion of the Universe in the Jeans equation, a term appears which
exactly cancels the divergent term from the background. We thereby establish a
formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter
Seismocardiographic Signal Timing with Myocardial Strain
Speckle Tracking Echocardiography (STE) is a relatively new method for
cardiac function evaluation. In the current study, STE was used to investigate
the timing of heart-induced mostly subaudible (i.e., below the frequency limit
of human hearing) chest-wall vibrations in relation to the longitudinal
myocardial strain. Such an approach may help elucidate the genesis of these
vibrations, thereby improving their diagnostic value
Relationship between Local Molecular Field Theory and Density Functional Theory for non-uniform liquids
The Local Molecular Field Theory (LMF) developed by Weeks and co-workers has
proved successful for treating the structure and thermodynamics of a variety of
non-uniform liquids. By reformulating LMF in terms of one-body direct
correlation functions we recast the theory in the framework of classical
Density Functional Theory (DFT). We show that the general LMF equation for the
effective reference potential phi_R follows directly from the standard
mean-field DFT treatment of attractive interatomic forces. Using an accurate
(Fundamental Measures) DFT for the non-uniform hard-sphere reference fluid we
determine phi_R for a hard-core Yukawa liquid adsorbed at a planar hard wall.
In the approach to bulk liquid-gas coexistence we find the effective potentials
exhibit rich structure that can include damped oscillations at large distances
from the wall as well as the repulsive hump near the wall required to generate
the low density 'gas' layer characteristic of complete drying. We argue that it
would be difficult to obtain the same level of detail from other (non DFT
based) implementations of LMF. LMF emphasizes the importance of making an
intelligent division of the interatomic pair potential of the full system into
a reference part and a remainder that can be treated in mean-field
approximation. We investigate different divisions for an exactly solvable one-
dimensional model where the pair potential has a hard-core plus a linear
attractive tail. Results for the structure factor and the equation of state of
the uniform fluid show that including a significant portion of the attraction
in the reference system can be much more accurate than treating the full
attractive tail in mean-field approximation. We discuss further aspects of the
relationship between LMF and DFT.Comment: 35 pages, 10 Fig
Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure
Bundles of many fibers, with statistically distributed thresholds for
breakdown of individual fibers and where the load carried by a bursting fiber
is equally distributed among the surviving members, are considered. During the
breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, with a distribution D(Delta) of the magnitude Delta of such
avalanches. We show that there is, for certain threshold distributions, a
crossover behavior of D(Delta) between two power laws D(Delta) proportional to
Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic
behavior, and we give the condition for which the D(Delta) proportional to
Delta^(-3/2) behavior is seen. This crossover is a signal of imminent
catastrophic failure in the fiber bundle. We find the same crossover behavior
in the fuse model.Comment: 4 pages, 4 figure
- …