15,586 research outputs found
Curable polyphosphazenes
Class of polyphosphazene polymers can be cured at moderate temperatures by action of moisture. In addition, polymers maintain flexibility when exposed to low temperatures
Development of thermally stable phosphonitrile elastomers for advanced aerospace structures
Both high and low molecular weight, curable poly(fluoroalkoxy phosphazene) terpolymers were prepared. These terpolymers resulted from reaction of (Cl2PNn) polymer with alkoxides derived from CF3CH2OH and C3F7CH2OH, and an alkoxide derived from CH3CH(OH)C2H4OH. The terpolymers were crosslinked with polyisocyanates at room temperature. High molecular weight materials were converted into isocyanate prepolymers which as films underwent moisture cures at room temperature. Prepolymer solutions were stable for several days, and showed good adhesion. Also the effects of polymerization of (Cl2PN)3 were studied. Purified octachlorophosphazene, thiocyanate salts, or hydrogen chloride were employed in attempts to decrease molecular weight. Hydrogen chloride was found to be a good agent for preparation of low molecular weight poly(dichloro phosphazene)
Progressive Star Bursts and High Velocities in the Infrared Luminous, Colliding Galaxy Arp 118
In this paper we demonstrate for the first time the connection between the
spatial and temporal progression of star formation and the changing locations
of the very dense regions in the gas of a massive disk galaxy (NGC 1144) in the
aftermath of its collision with a massive elliptical (NGC 1143). These two
galaxies form the combined object Arp 118, a collisional ring galaxy system.
The results of 3D, time-dependent, numerical simulations of the behavior of the
gas, stars, and dark matter of a disk galaxy and the stars and dark matter in
an elliptical during a collision are compared with multiwavelength observations
of Arp 118. The collision that took place approximately 22 Myr ago generated a
strong, non-linear density wave in the stars and gas in the disk of NGC 1144,
causing the gas to became clumped on a large scale. This wave produced a series
of superstarclusters along arcs and rings that emanate from the central point
of impact in the disk. The locations of these star forming regions match those
of the regions of increased gas density predicted the time sequence of models.
The models also predict the large velocity gradients observed across the disk
of NGC 1144. These are due to the rapid radial outflow of gas coupled to large
azimuthal velocities in the expanding ring, caused by the impact of the massive
intruder.Comment: 12 pages in document, and 8 figures (figures are separate from the
document's file); Submitted to Astrophysical Journal Letter
Pregnancy-associated breast cancer - Special features in diagnosis and treatment
For obvious psychological reasons it is difficult to associate pregnancy - a life-giving period of our existence with life-threatening malignancies. Symptoms pointing to malignancy are often ignored by both patients and physicians, and this, together with the greater difficulty of diagnostic imaging, probably results in the proven delay in the detection of breast cancers during pregnancy. The diagnosis and treatment of breast cancer are becoming more and more important, as the fulfillment of the desire to have children is increasingly postponed until a later age associated with a higher risk of carcinoma, and improved cure rates of solid tumors no longer exclude subsequent pregnancies. The following article summarizes the special features of the diagnosis and primary therapy of pregnancy-associated breast cancer with particular consideration of cytostatic therapy
On the Deconfinement Phase Transition in the Resonance Gas
We obtain the constraints on the ruling parameters of the dense hadronic gas
model at the critical temperature and propose the quasiuniversal ratios of the
thermodynamic quantities. The possible appearence of thermodynamical
instability in such a model is discussed.Comment: 7 pages, plain LaTeX, BI-TP 94/4
Survey of inorganic polymers
A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics
Correlation between the Extraordinary Hall Effect and Resistivity
We study the contribution of different types of scattering sources to the
extraordinary Hall effect. Scattering by magnetic nano-particles embedded in
normal-metal matrix, insulating impurities in magnetic matrix, surface
scattering and temperature dependent scattering are experimentally tested. Our
new data, as well as previously published results on a variety of materials,
are fairly interpreted by a simple modification of the skew scattering model
- …