531 research outputs found

    On experimental procedures for entanglement verification

    Get PDF
    We give an overview of different types of entanglement that can be generated in experiments, as well as of various protocols that can be used to verify or quantify entanglement. We propose several criteria that, we argue, should be applied to experimental entanglement verification procedures. Explicit examples demonstrate that not following these criteria will tend to result in overestimating the amount of entanglement generated in an experiment or in infering entanglement when there is none. We distinguish protocols meant to refute or eliminate hidden-variable models from those meant to verify entanglement.Comment: 15 page

    Entanglement generated between a single atom and a laser pulse

    Full text link
    We quantify the entanglement generated between an atom and a laser pulse in free space. We find that the entanglement calculated using a simple closed-system Jaynes-Cummings Hamiltonian is in remarkable agreement with a full open-system calculation, even though the free-space geometry is far from the strong coupling regime of cavity QED. We explain this result using a simple model in which the atom couples weakly to the laser while coupling strongly to the vacuum. Additionally we place an upper bound on the total entanglement between the atom and all paraxial modes using a quantum trajectories unravelling. This upper bound provides a benchmark for atom-laser coupling.Comment: 8 pages, 4 figure

    Entanglement under restricted operations: Analogy to mixed-state entanglement

    Get PDF
    We show that the classification of bi-partite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.Comment: 10 pages, 2 figures; published versio

    Unambiguous State Discrimination of Coherent States with Linear Optics: Application to Quantum Cryptography

    Get PDF
    We discuss several methods for unambiguous state discrimination of N symmetric coherent states using linear optics and photodetectors. One type of measurements is shown to be optimal in the limit of small photon numbers for any N. For the special case of N=4 this measurement can be fruitfully used by the receiving end (Bob) in an implementation of the BB84 quantum key distribution protocol using faint laser pulses. In particular, if Bob detects only a single photon the procedure is equivalent to the standard measurement that he would have to perform in a single-photon implementation of BB84, if he detects two photons Bob will unambiguously know the bit sent to him in 50% of the cases without having to exchange basis information, and if three photons are detected, Bob will know unambiguously which quantum state was sent.Comment: 5 RevTeX pages, 2 eps figure

    Strongly focused light beams interacting with single atoms in free space

    Get PDF
    We construct 3-D solutions of Maxwell's equations that describe Gaussian light beams focused by a strong lens. We investigate the interaction of such beams with single atoms in free space and the interplay between angular and quantum properties of the scattered radiation. We compare the exact results with those obtained with paraxial light beams and from a standard input-output formalism. We put our results in the context of quantum information processing with single atoms.Comment: 9 pages, 9 figure

    The Effect of Stochastic Noise on Quantum State Transfer

    Full text link
    We consider the effect of classical stochastic noise on control laser pulses used in a scheme for transferring quantum information between atoms, or quantum dots, in separate optical cavities via an optical connection between cavities. We develop a master equation for the dynamics of the system subject to stochastic errors in the laser pulses, and use this to evaluate the sensitivity of the transfer process to stochastic pulse shape errors for a number of different pulse shapes. We show that under certain conditions, the sensitivity of the transfer to the noise depends on the pulse shape, and develop a method for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review

    There is no unmet requirement of optical coherence for continuous-variable quantum teleportation

    Full text link
    It has been argued [T. Rudolph and B.C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)] that continuous-variable quantum teleportation at optical frequencies has not been achieved because the source used (a laser) was not `truly coherent'. Here I show that `true coherence' is always illusory, as the concept of absolute time on a scale beyond direct human experience is meaningless. A laser is as good a clock as any other, even in principle, and this objection to teleportation experiments is baseless.Comment: 6 pages, no figures, no equations, to be published in Journal of Modern Optics. This is a long version of quant-ph/0104004. I have not replaced that paper with this one because some authors have referenced that one approvingly who may feel differently about doing so to this versio

    Error free quantum communication through noisy channels

    Get PDF
    We suggest a method to perform a quantum logic gate between distant qubits by off-resonant field-atom dispersive interactions. The scheme we present is shown to work ideally even in the presence of errors in the photon channels used for communication. The stability against errors arises from the paradoxical situation that the transmitted photons carry no information about the state of the qubits. In contrast to a previous proposal for ideal communication [Phys. Rev. Lett. 78, 4293 (1997)] our proposal only involves single atoms in the sending and receiving devices.Comment: 6 pages, including 2 figure

    The cryptographic power of misaligned reference frames

    Full text link
    Suppose that Alice and Bob define their coordinate axes differently, and the change of reference frame between them is given by a probability distribution mu over SO(3). We show that this uncertainty of reference frame is of no use for bit commitment when mu is uniformly distributed over a (sub)group of SO(3), but other choices of mu can give rise to a partially or even asymptotically secure bit commitment.Comment: 4 pages Latex; v2 has a new referenc

    Quantum state transfer between motion and light

    Get PDF
    We describe schemes for transferring quantum states between light fields and the motion of a trapped atom. Coupling between the motion and the light is achieved via Raman transitions driven by a laser field and the quantized field of a high-finesse microscopic cavity mode. By cascading two such systems and tailoring laser field pulses, we show that it is possible to transfer an arbitrary motional state of one atom to a second atom at a spatially distant site.Comment: 10 pages, RevTex, 6 figures, to appear in Journal of Optics B: Quantum and Semiclassical Optic
    corecore