8,872 research outputs found

    First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models

    Full text link
    We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a FLRW spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies in particular that no region described by FLRW can be a source of the Kerr metric.Comment: LaTeX; 29 page

    Spin transport in high quality suspended graphene devices

    Get PDF
    We measure spin transport in high mobility suspended graphene (\mu ~ 10^5 cm^2/Vs), obtaining a (spin) diffusion coefficient of 0.1 m^2/s and giving a lower bound on the spin relaxation time (\tau_s ~ 150 ps) and spin relaxation length (\lambda_s=4.7 \mu m) for intrinsic graphene. We develop a theoretical model considering the different graphene regions of our devices that explains our experimental data.Comment: 22 pages, 6 figures; Nano Letters, Article ASAP (2012) (http://pubs.acs.org/doi/abs/10.1021/nl301050a

    Field induced quantum-Hall ferromagnetism in suspended bilayer graphene

    Get PDF
    We have measured the magneto-resistance of freely suspended high-mobility bilayer graphene. For magnetic fields B>1B>1 T we observe the opening of a field induced gap at the charge neutrality point characterized by a diverging resistance. For higher fields the eight-fold degenerated lowest Landau level lifts completely. Both the sequence of this symmetry breaking and the strong transition of the gap-size point to a ferromagnetic nature of the insulating phase developing at the charge neutrality point.Comment: 7 pages, 5 figure

    Zonal Jets as Transport Barriers in Planetary Atmospheres

    Get PDF
    The connection between transport barriers and potential vorticity (PV) barriers in PV-conserving flows is investigated with a focus on zonal jets in planetary atmospheres. A perturbed PV-staircase model is used to illustrate important concepts. This flow consists of a sequence of narrow eastward and broad westward zonal jets with a staircase PV structure; the PV-steps are at the latitudes of the cores of the eastward jets. Numerically simulated solutions to the quasigeostrophic PV conservation equation in a perturbed PV-staircase flow are presented. These simulations reveal that both eastward and westward zonal jets serve as robust meridional transport barriers. The surprise is that westward jets, across which the background PV gradient vanishes, serve as robust transport barriers. A theoretical explanation of the underlying barrier mechanism is provided. It is argued that transport barriers near the cores of westward zonal jets, across which the background PV gradient is small, are found in Jupiter's midlatitude weather layer and in the Earth's summer hemisphere subtropical stratosphere.Comment: Accepted for publication in JA

    Density operator of a system pumped with polaritons: A Jaynes-Cummings like approach

    Full text link
    We investigate the effects of considering two different incoherent pumpings over a microcavity-quantum dot system modelled using the Jaynes-Cummings Hamiltonian. When the system is incoherently pumped with polaritons it is able to sustain a large number of photons inside the cavity with Poisson-like statistics in the stationary limit, and also leads to a separable exciton-photon state. We also investigate the effects of both types of pumpings (Excitonic and Polaritonic) in the emission spectrum of the cavity. We show that the polaritonic pumping as considered here is unable to modify the dynamical regimes of the system as the excitonics pumping does. Finally, we obtain a closed form expression for the negativity of the density matrices that the quantum master equation considered here generates.Comment: 16 pages, 4 figure

    On global models for isolated rotating axisymmetric charged bodies; uniqueness of the exterior field

    Full text link
    A relatively recent study by Mars and Senovilla provided us with a uniqueness result for the exterior vacuum gravitational field generated by an isolated distribution of matter in axial rotation in equilibrium in General Relativity. The generalisation to exterior electrovacuum gravitational fields, to include charged rotating objects, is presented here.Comment: LaTeX, 21 pages, uses iopart styl

    Polariton Lasing in a Multilevel Quantum Dot Strongly Coupled To a Single Photon Mode

    Full text link
    We present an approximate analytic expression for the photoluminescence spectral function of a model polariton system, which describes a quantum dot, with a finite number of fermionic levels, strongly interacting with the lowest photon mode of a pillar microcavity. Energy eigenvalues and wavefunctions of the electron-hole-photon system are obtained by numerically diagonalizing the Hamiltonian. Pumping and photon losses through the cavity mirrors are described with a master equation, which is solved in order to determine the stationary density matrix. The photon first-order correlation function, from which the spectral function is found, is computed with the help of the Quantum Regression Theorem. The spectral function qualitatively describes the polariton lasing regime in the model, corresponding to pumping rates two orders of magnitude lower than those needed for ordinary (photon) lasing. The second-order coherence functions for the photon and the electron-hole subsystems are computed as functions of the pumping rate.Comment: version accepted in Phys. Rev.

    Spin Relaxation in Graphene with self-assembled Cobalt Porphyrin Molecules

    Get PDF
    In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin relaxation mechanism. A self-assembled layer of organic cobalt-porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via non-local spin-valve and Hanle spin precession measurements is reported. For the functionalized (molecular) devices, we observe a slight decrease in the spin relaxation time ({\tau}s), which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low quality samples (low mobility), possibly due to dominance of Elliot-Yafet (EY) type spin relaxation mechanisms

    Water requirements of floodplain rivers and fisheries: existing decision support tools and pathways for development

    Get PDF
    Fisheries / Rivers / Flood plains / Hydrology / Ecology / Models / Decision support tools / Environmental impact assessment / Methodology / Databases
    • …
    corecore