47 research outputs found

    An experimental and kinetic modelling study of the oxidation of the four isomers of butanol

    Full text link
    Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition delay times. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock tube measurements. Reaction flux and sensitivity analysis indicate that the consumption of 1 butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H-atoms and OH radicals. Conversely, the consumption of tert butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert butanol are the first of their kind.

    Probiotic Bacteria Induce a ‘Glow of Health’

    Get PDF
    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health

    Lactobacillus plantarum

    No full text

    Improved protection against solar-simulated radiation-induced immunosuppression by a sunscreen with enhanced ultraviolet a protection

    Get PDF
    Ultraviolet radiation-induced immunosuppression is thought to play a part in skin cancer. Several studies have indicated that sunscreens that are designed to protect against erythema failed to give comparable protection against ultraviolet radiation-induced immunosuppression. One possible reason for this discrepancy is inadequate ultraviolet A protection. This study evaluated the level of immunoprotection in mice afforded by two broad-spectrum sunscreens with the same sun protection factor, but with different ultraviolet A protection factors. Both sunscreens contained the same ultraviolet B and ultraviolet A filters, in the same vehicle, but at different concentrations. Solar simulated radiation dose–response curves for erythema, edema, and systemic suppression of contact hypersensitivity were generated and used to derive protection factors for each end-point. The results of three different techniques for determining immune protection factor were compared. A comparison of the two sunscreens showed that the protection factor for erythema in mice was similar to that determined in humans (sun protection factor) but the protection factor for edema in mice was lower. Both sunscreens protected against suppression of contact hypersensitivity but the product with the higher ultraviolet A-protection factor showed significantly greater protection. The three techniques for determining immunoprotection gave very similar results for a given sunscreen, but immune protection factor was always lower than sun protection factor. These data suggest that sun protection factor may not predict the ability of sunscreens to protect the immune system and that a measure of ultraviolet A protection may also be necessary

    Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes.

    No full text
    The endocannabinoid system comprises cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol, and metabolic enzymes of these ligands. The endocannabinoid system has recently been implicated in the regulation of various pathophysiological processes of the skin that include immune competence and/or tolerance of keratinocytes, the disruption of which might promote the development of skin diseases. Recent evidence showed that CB1 in keratinocytes limits the secretion of proinflammatory chemokines, suggesting that this receptor might also regulate T cell dependent inflammatory diseases of the skin. In this article, we sought to investigate the cytokine profile of IFN-γ-activated keratinocytes, and found that CB1 activation by AEA suppressed production and release of signature TH1- and TH17-polarizing cytokines, IL-12 and IL-23, respectively. We also set up cocultures between a conditioned medium of treated keratinocytes and naive T cells to disclose the molecular details that regulate the activation of highly proinflammatory TH1 and TH17 cells. AEA-treated keratinocytes showed reduced an induction of IFN-γ-producing TH1 and IL-17-producing TH17 cells, and these effects were reverted by pharmacological inhibition of CB1 Further analyses identified mammalian target of rapamycin as a proinflammatory signaling pathway regulated by CB1, able to promote either IL-12 and IL-23 release from keratinocytes or TH1 and TH17 polarization. Taken together, these findings demonstrate that AEA suppresses highly pathogenic T cell subsets through CB1-mediated mammalian target of rapamycin inhibition in human keratinocytes. Thus, it can be speculated that the latter pathway might be beneficial to the physiological function of the skin, and can be targeted toward inflammation-related skin diseases
    corecore