12,571 research outputs found
Quantum turbulence and correlations in Bose-Einstein condensate collisions
We investigate numerically simulated collisions between experimentally
realistic Bose-Einstein condensate wavepackets, within a regime where highly
populated scattering haloes are formed. The theoretical basis for this work is
the truncated Wigner method, for which we present a detailed derivation, paying
particular attention to its validity regime for colliding condensates. This
paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and
C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)] and we investigate both
single-trajectory solutions, which reveal the presence of quantum turbulence in
the scattering halo, and ensembles of trajectories, which we use to calculate
quantum-mechanical correlation functions of the field
A New Godunov Scheme for MHD, with Application to the MRI in disks
We describe a new numerical scheme for MHD which combines a higher order
Godunov method (PPM) with Constrained Transport. The results from a selection
of multidimensional test problems are presented. The complete test suite used
to validate the method, as well as implementations of the algorithm in both F90
and C, are available from the web. A fully three-dimensional version of the
algorithm has been developed, and is being applied to a variety of
astrophysical problems including the decay of supersonic MHD turbulence, the
nonlinear evolution of the MHD Rayleigh-Taylor instability, and the saturation
of the magnetorotational instability in the shearing box. Our new simulations
of the MRI represent the first time that a higher-order Godunov scheme has been
applied to this problem, providing a quantitative check on the accuracy of
previous results computed with ZEUS; the latter are found to be reliable.Comment: 11 pages, style files included, Conference Proceedings: "Magnetic
Fields in the Universe: from Laboratory and Stars to Primordial Structures",
More information on Athena can be found at
http://www.astro.princeton.edu/~jstone/athena.htm
Quantum turbulence in condensate collisions: an application of the classical field method
We apply the classical field method to simulate the production of correlated
atoms during the collision of two Bose-Einstein condensates. Our
non-perturbative method includes the effect of quantum noise, and provides for
the first time a theoretical description of collisions of high density
condensates with very large out-scattered fractions. Quantum correlation
functions for the scattered atoms are calculated from a single simulation, and
show that the correlation between pairs of atoms of opposite momentum is rather
small. We also predict the existence of quantum turbulence in the field of the
scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure
Three-body recombination of ultracold Bose gases using the truncated Wigner method
We apply the truncated Wigner method to the process of three-body
recombination in ultracold Bose gases. We find that within the validity regime
of the Wigner truncation for two-body scattering, three-body recombination can
be treated using a set of coupled stochastic differential equations that
include diffusion terms, and can be simulated using known numerical methods. As
an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on
cond-mat mad
Correcting low-frequency noise with continuous measurement
Low-frequency noise presents a serious source of decoherence in solid-state
qubits. When combined with a continuous weak measurement of the eigenstates,
the low-frequency noise induces a second-order relaxation between the qubit
states. Here we show that the relaxation provides a unique approach to
calibrate the low-frequency noise in the time-domain. By encoding one qubit
with two physical qubits that are alternatively calibrated, quantum logic gates
with high fidelity can be performed.Comment: 10 pages, 3 figures, submitte
Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen
We show that a correct formulation of the cold collision frequency shift for
two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen
is consistent with experimental data. Our treatment includes transport and
inhomogeneity into the theory of a non-condensed gas, which causes substantial
changes in the cold collision frequency shift for the ordinary thermal gas, as
a result of the very high frequency (3.9kHz) of transverse trap mode. For the
condensed gas, we find substantial corrections arise from the inclusion of
quasiparticles, whose number is very large because of the very low frequency
(10.2Hz) of the longitudinal trap mode. These two effects together account for
the apparent absence of a "factor of two" between the two possibilities.
Our treatment considers only the Doppler-free measurements, but could be
extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we
predict a characteristic "foot" extending into higher detunings than can arise
from the condensate alone, as a result of a correct treatment of the statistics
of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure
- …