30 research outputs found

    Conditional Lower Bounds for Space/Time Tradeoffs

    Full text link
    In recent years much effort has been concentrated towards achieving polynomial time lower bounds on algorithms for solving various well-known problems. A useful technique for showing such lower bounds is to prove them conditionally based on well-studied hardness assumptions such as 3SUM, APSP, SETH, etc. This line of research helps to obtain a better understanding of the complexity inside P. A related question asks to prove conditional space lower bounds on data structures that are constructed to solve certain algorithmic tasks after an initial preprocessing stage. This question received little attention in previous research even though it has potential strong impact. In this paper we address this question and show that surprisingly many of the well-studied hard problems that are known to have conditional polynomial time lower bounds are also hard when concerning space. This hardness is shown as a tradeoff between the space consumed by the data structure and the time needed to answer queries. The tradeoff may be either smooth or admit one or more singularity points. We reveal interesting connections between different space hardness conjectures and present matching upper bounds. We also apply these hardness conjectures to both static and dynamic problems and prove their conditional space hardness. We believe that this novel framework of polynomial space conjectures can play an important role in expressing polynomial space lower bounds of many important algorithmic problems. Moreover, it seems that it can also help in achieving a better understanding of the hardness of their corresponding problems in terms of time

    Finding Pairwise Intersections Inside a Query Range

    Get PDF
    We study the following problem: preprocess a set O of objects into a data structure that allows us to efficiently report all pairs of objects from O that intersect inside an axis-aligned query range Q. We present data structures of size O(n(polylogn))O(n({\rm polylog} n)) and with query time O((k+1)(polylogn))O((k+1)({\rm polylog} n)) time, where k is the number of reported pairs, for two classes of objects in the plane: axis-aligned rectangles and objects with small union complexity. For the 3-dimensional case where the objects and the query range are axis-aligned boxes in R^3, we present a data structures of size O(nn(polylogn))O(n\sqrt{n}({\rm polylog} n)) and query time O((n+k)(polylogn))O((\sqrt{n}+k)({\rm polylog} n)). When the objects and query are fat, we obtain O((k+1)(polylogn))O((k+1)({\rm polylog} n)) query time using O(n(polylogn))O(n({\rm polylog} n)) storage

    Exact Weight Subgraphs and the k-Sum Conjecture

    Full text link
    We consider the Exact-Weight-H problem of finding a (not necessarily induced) subgraph H of weight 0 in an edge-weighted graph G. We show that for every H, the complexity of this problem is strongly related to that of the infamous k-Sum problem. In particular, we show that under the k-Sum Conjecture, we can achieve tight upper and lower bounds for the Exact-Weight-H problem for various subgraphs H such as matching, star, path, and cycle. One interesting consequence is that improving on the O(n^3) upper bound for Exact-Weight-4-Path or Exact-Weight-5-Path will imply improved algorithms for 3-Sum, 5-Sum, All-Pairs Shortest Paths and other fundamental problems. This is in sharp contrast to the minimum-weight and (unweighted) detection versions, which can be solved easily in time O(n^2). We also show that a faster algorithm for any of the following three problems would yield faster algorithms for the others: 3-Sum, Exact-Weight-3-Matching, and Exact-Weight-3-Star

    On a class of O(n2) problems in computational geometry

    No full text

    On a class of O(n²) problems in computational geometry

    No full text
    There are many problems in computational geometry for which the best know algorithms take time (n2) (or more) in the worst case while only very low lower bounds are known. In this paper we describe a large class of problems for which we prove that they are all at least as dicult as the following base problem 3sum: Given a set S of n integers, are there three elements of S that sum up to 0. We call such problems 3sum-hard. The best known algorithm for the base problem takes (n2) time. The class of 3sum-hard problems includes problems like: Given a set of lines in the plane, are there three that meet in a point?; or: Given a set of triangles in the plane, does their union have a hole? Also certain visibility and motion planning problems are shown to be in the class. Although this does not prove a lower bound for these problems, there is no hope of obtaining o(n2) solutions for them unless we can improve the solution for the base problem

    Subquadratic Algorithms for 3SUM

    No full text

    Finding Longest Approximate Periodic Patterns

    No full text

    Speeding up the incremental construction of the union of geometric objects in practice

    No full text
    We present a new incremental algorithm for constructing the union of n triangles in the plane. In our experiments, the new algorithm, which we call the Disjoint-Cover (DC) algorithm, performs significantly better than the standard randomized incremental construction (RIC) of the union. Our algorithm is rather hard to analyze rigorously, but we provide an initial such analysis, which yields an upper bound on its performance that is expressed in terms of the expected cost of the RIC algorithm. Our approach and analysis generalize verbatim to the construction of the union of other objects in the plane, and, with slight modifications, to three dimensions. We present experiments with a software implementation of our algorithm using the Cgal library of geometric algorithms.
    corecore