10,786 research outputs found
Uncertainties of predictions in models of eternal inflation
In a previous paper \cite{MakingPredictions}, a method of comparing the
volumes of thermalized regions in eternally inflating universe was introduced.
In this paper, we investigate the dependence of the results obtained through
that method on the choice of the time variable and factor ordering in the
diffusion equation that describes the evolution of eternally inflating
universes. It is shown, both analytically and numerically, that the variation
of the results due to factor ordering ambiguity inherent in the model is of the
same order as their variation due to the choice of the time variable.
Therefore, the results are, within their accuracy, free of the spurious
dependence on the time parametrization.Comment: 30 pages, RevTeX, figure included, added some references and Comments
on recent proposal (gr-qc/9511058) of alternative regularization schemes, to
appear in Phys. Rev.
Bounds on isocurvature perturbations from CMB and LSS data
We obtain very stringent bounds on the possible cold dark matter, baryon and
neutrino isocurvature contributions to the primordial fluctuations in the
Universe, using recent cosmic microwave background and large scale structure
data. In particular, we include the measured temperature and polarization power
spectra from WMAP and ACBAR, as well as the matter power spectrum from the 2dF
galaxy redshift survey. Neglecting the possible effects of spatial curvature,
tensor perturbations and reionization, we perform a Bayesian likelihood
analysis with nine free parameters, and find that the amplitude of the
isocurvature component cannot be larger than about 31% for the cold dark matter
mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for
the neutrino velocity mode, at 2-sigma, for uncorrelated models. On the other
hand, for correlated adiabatic and isocurvature components, the fraction could
be slightly larger. However, the cross-correlation coefficient is strongly
constrained, and maximally correlated/anticorrelated models are disfavored.
This puts strong bounds on the curvaton model, independently of the bounds on
non-Gaussianity.Comment: 4 pages, 1 figure, some minor corrections; version accepted in PR
Unambiguous probabilities in an eternally inflating universe
``Constants of Nature'' and cosmological parameters may in fact be variables
related to some slowly-varying fields. In models of eternal inflation, such
fields will take different values in different parts of the universe. Here I
show how one can assign probabilities to values of the ``constants'' measured
by a typical observer. This method does not suffer from ambiguities previously
discussed in the literature.Comment: 7 pages, Final version (minor changes), to appear in Phys. Rev. Let
Gauge invariant MSSM inflaton
We argue that all the necessary ingredients for successful inflation are
present in the flat directions of the Minimally Supersymmetric Standard Model.
We show that out of many gauge invariant combinations of squarks, sleptons and
Higgses, there are two directions, , and , which are
promising candidates for the inflaton. The model predicts more than
e-foldings with an inflationary scale of GeV,
provides a tilted spectrum with an amplitude of and a
negligible tensor perturbation. The temperature of the thermalized plasma could
be as low as ~TeV. Parts of the inflaton potential
can be determined independently of cosmology by future particle physics
experiments.Comment: 4 revtex pages, some references added, stabilization of moduli and
supergravity effects are discusse
Predictability crisis in inflationary cosmology and its resolution
Models of inflationary cosmology can lead to variation of observable
parameters ("constants of Nature") on extremely large scales. The question of
making probabilistic predictions for today's observables in such models has
been investigated in the literature. Because of the infinite thermalized volume
resulting from eternal inflation, it has proven difficult to obtain a
meaningful and unambiguous probability distribution for observables, in
particular due to the gauge dependence. In the present paper, we further
develop the gauge-invariant procedure proposed in a previous work for models
with a continuous variation of "constants". The recipe uses an unbiased
selection of a connected piece of the thermalized volume as sample for the
probability distribution. To implement the procedure numerically, we develop
two methods applicable to a reasonably wide class of models: one based on the
Fokker-Planck equation of stochastic inflation, and the other based on direct
simulation of inflationary spacetime. We present and compare results obtained
using these methods.Comment: 23 pages, 13 figure
Generalized Slow Roll Conditions and the Possibility of Intermediate Scale Inflation in Scalar-Tensor Theory
Generalized slow roll conditions and parameters are obtained for a general
form of scalar-tensor theory (with no external sources), having arbitrary
functions describing a nonminimal gravitational coupling F(\phi), a Kahler-like
kinetic function k(\phi), and a scalar potential V(\phi). These results are
then used to analyze a simple toy model example of chaotic inflation with a
single scalar field \phi and a standard Higgs potential and a simple
gravitational coupling function. In this type of model inflation can occur with
inflaton field values at an intermediate scale of roughly 10^{11} GeV when the
particle physics symmetry breaking scale is approximately 1 TeV, provided that
the theory is realized within the Jordan frame. If the theory is realized in
the Einstein frame, however, the intermediate scale inflation does not occur.Comment: 14 pages, no figs. Accepted to Classical and Quantum Gravit
Blue spectra and induced formation of primordial black holes
We investigate the statistical properties of primordial black hole (PBH)
formation in the very early Universe. We show that the high level of
inhomogeneity of the early Universe leads to the formation of the first
generation PBHs. %The existence of these PBHs This causes later the appearance
of a dust-like phase of the cosmological expansion. We discuss here a new
mechanism for the second generation of PBH formation during the dust-like
phase. This mechanism is based on the coagulation process. We demonstrate that
the blue power spectrum of initial adiabatic perturbations after inflation
leads to overproduction of primordial black holes with gg if the power index is .Comment: 16 pages, 2 figure
- …
