90 research outputs found

    The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH.

    Get PDF
    Polycations such as polyethylenimine (PEI) are used in many novel nonviral vector designs and there are continuous efforts to increase our mechanistic understanding of their interactions with cells. Even so, the mechanism of polyplex escape from the endosomal/lysosomal pathway after internalization is still elusive. The “proton sponge ” hypothesis remains the most generally accepted mechanism, although it is heavily debated. This hypothesis is associated with the large buffering capacity of PEI and other polycations, which has been interpreted to cause an increase in lysosomal pH even though no conclusive proof has been provided. In the present study, we have used a nanoparticle pH sensor that was developed for pH measurements in the endosomal/lysosomal pathway. We have carried out quantitative measurements of lysosomal pH as a function of PEI content and correlate the results to the “proton sponge ” hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the “proton sponge ” effect is the dominant mechanism of polyplex escape

    Organic reactions at high pressure.

    Full text link

    New Insights into the Mechanism of Purple Acid Phosphatase through <sup>1</sup>H NMR Spectroscopy of the Recombinant Human Enzyme

    No full text
    Proton NMR spectra of FeIII−FeII recombinant single polypeptide human PAP (recHPAP) have been measured at, above, and below its pH optimum, as have the spectra of inhibited forms containing fluoride and phosphate, analogues of the substrates hydroxide and phosphate esters, respectively. The results demonstrate that binding of inhibitory anions to the dinuclear mixed-valent site of recHPAP is controlled by protonation of a ligand to the dinuclear center. Thus, the group that is responsible for pKa,1 in the enzymatic activity versus pH profile functions as a “gatekeeper”, whose protonation state controls anion binding to the mixed-valent dinuclear site. The correlation between the pKa values observed in kinetics studies and for the spectroscopic changes strongly suggests that this group is the nucleophilic hydroxide that attacks the phosphate ester substrate
    corecore