854 research outputs found

    Learnable Descriptors for Visual Search

    Get PDF
    This work proposes LDVS, a learnable binary local descriptor devised for matching natural images within the MPEG CDVS framework. LDVS descriptors are learned so that they can be sign-quantized and compared using the Hamming distance. The underlying convolutional architecture enjoys a moderate parameters count for operations on mobile devices. Our experiments show that LDVS descriptors perform favorably over comparable learned binary descriptors at patch matching on two different datasets. A complete pair-wise image matching pipeline is then designed around LDVS descriptors, integrating them in the reference CDVS evaluation framework. Experiments show that LDVS descriptors outperform the compressed CDVS SIFT-like descriptors at pair-wise image matching over the challenging CDVS image dataset

    Bioregulators can improve biomass production, photosynthetic efficiency, and ornamental quality of gazania rigens L

    Get PDF
    Gazania rigens L. is a perennial herbaceous plant that belongs to the Asteraceae family, widely used as bedding or ornamental potted plants. The environmental and economic sustainability of ornamental production can be enhanced using environmentally friendly bioregulators. A pot experiment was conducted to evaluate the influence of key bioregulators gibberellic acid ((GA3) at 50, 100 or 150 mg L 121), humic acid ((HA) at 100, 300 or 600 mg L 121), and ascorbic acid ((AA) at 50, 100 or 200 mg L 121)), on the growth, leaf gas exchange, and ornamental quality of G. rigens. The results indicated that plants treated with foliar applications of GA3, HA, or AA exhibited higher plant fresh and dry biomass, plant height, leaf area, and leaf area ratio, root-shoot ratio, root-shoot mass fractions, and number of flowers, as well as the flowers display time. All bioregulator treatments enhanced the vegetative and floral characteristics of Gazania plants. The GA3 was the most efficient at the concentration of 100 mg L 121. The highest efficacy of HA and AA treatments was observed at the higher concentrations, 600 and 200 mg L 121, respectively. These results were associated with higher photosynthetic rate (A), transpiration rate (E) as well as stomatal conductance (gs), and water use efficiency (WUE). In conclusion, the results suggest that foliar-applied bioregulators to Gazania are promising and represent sustainable strategies to enhance growth, flowering, and flower display time of Gazania plants

    Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce

    Get PDF
    The quality of horticultural products is the result of the interaction of different factors, including grower\u2019s crop management ability, genotype, and environment. Sub-optimal environmental conditions during plant growth can induce abiotic stresses and reduce the crop performance with yield reduction and quality losses. However, abiotic stresses can induce several physiological, biochemical, and molecular responses in plants, aiming to cope with the stressful conditions. It is well known that these abiotic stresses are also elicitors of the biosynthesis of many metabolites in plants, including a wide range of bioactive compounds, which firstly serve as functional molecules for crop adaptation, but they have also a great interest for their beneficial effects on human health. Nowadays, the consumer is oriented to low-energy foods with low fat content, but at the same time, growing attention is paid to the presence of bioactive molecules, which are recognized as health-related compounds and concur to the nutraceutical value of plant-derived foods. In this context, fruit and vegetables play an important role as sources of bioactive ingredients in the diet. At the cultivation level, the understanding of crop responses to abiotic stresses and how they act in the biosynthesis/accumulation of these bioactive compounds is crucial. In fact, controlled abiotic stresses can be used as tools for improving the nutraceutical value of fruit and vegetables. This review focuses on the quality of vegetables and fruits as affected by preharvest abiotic stressors, with particular attention to the effect on the nutraceutical aspects

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission

    Cocoa Bar Antioxidant Profile Enrichment with Underutilized Apples Varieties

    Get PDF
    : The impact of dried apples (Malus × domestica Borkh.) addition on improving the antioxidant characteristics of dark chocolate was evaluated. The antioxidant activity was measured through DPPH scavenging activity and showed an increase in the cocoa bar with 'Nesta' dry apple (17.3% vs. 46.8%) in comparison to cocoa mass. The 15 polyphenols analyzed by UHPLC-ESI-MS/MS indicated great variability among the apple varieties. Quercetin was detected in the highest concentrations (ranged from 753.3 to 1915.5 µg g-1), while the lowest were for kaempferol 7-O-glucoside, measured only in 'Mora' and 'Nesta' cocoa bars (from 0.034 to 0.069 µg g-1, respectively). P-coumaric acid, trans-ferulic acid, and chlorogenic acid contribute largely to the antioxidant activity in cocoa bars. Principal component analysis shows that a cocoa bar with the addition of 'Nesta' dry apple differ from others due to its higher content of polyphenols (1614 ± 61.8 mg gallic acid equivalents per 100 g). In conclusion, data confirm that cocoa bars with dry apples might be considered as a polyphenol-enriched food

    CFD MODELING OF SOLAR COLLECTOR WITH NANO-FLUID DIRECT ABSORPTION FOR CIVIL APPLICATION

    Get PDF
    Direct solar absorption has been considered often in the past as a possible configuration of solar thermal collectors for residential and small commercial applications. Of course, a direct absorption could improve the performance of solar collectors by skipping one step of the heat transfer mechanism of standard devices and by modifying the temperature distribution inside the collector. In fact, classical solar thermal collectors have a metal sheet as absorber, designed such that water has the minimum temperature in each transversal section, in order to collect as much as possible the solar thermal energy. On the other hand, in a direct configuration, the hottest part of the system is the operating fluid and this allows to have a more efficient conversion. Nanofluids, i.e. fluids with a suspension of nano-particles, as carbon nano-horns, could be a good and innovative family of absorbing fluids, for their higher absorption coefficient with respect to the base fluid and stability under moderate temperature gradients. Moreover, carbon nanohorns offer the significant advantage to be non-toxic unlike other carbon nanoparticles (e.g. carbon nanotubes). In this work, an original 3D model of the absorption phenomena in nano-fluids flowing in a cylindrical tube is coupled with a CFD analysis of the flow and temperature field. Recent measurements of the optical properties of nano-fluids with different concentrations have been used for the radiation heat transfer modeling and included in the fluid dynamic modeling as well. Heat losses due to conduction, convection and radiation at the boundaries are included in the model. The results are compared with the typical performance of flat solar collectors present on the marke

    Weekly chemotherapy in advanced prostatic cancer.

    Get PDF
    This randomised phase II study was performed in order to evaluate the effectiveness of a weekly chemotherapy regimen in advanced prostatic carcinoma patients (stage D2) refractory to hormonal therapy. Seventy-two cases were studied: they were randomised in a 2:1 ratio to receive either epirubicin (30 mg m-2 weekly) or doxorubicin (25 mg m-2 weekly); 48 patients received epirubicin and 24 received doxorubicin. After 12 courses of chemotherapy, the 45 evaluable patients in the epirubicin arm showed a response rate of 37.7% and the 21 evaluable patients in the doxorubicin arm showed a response rate of 33.3% (P = 0.51). Pain intensity, bone and prostatic tumour markers rapidly and significantly decreased in responders. An improvement in physical symptoms, functional conditions and in emotional well-being was observed in the majority of the treated patients. The histological analysis of bone metastases, performed before and after 12 courses of chemotherapy showed a significant reduction in neoplastic invasion and in new bone formation in responders. Cardiac performance worsened in five out of 45 patients and in ten out of 21 during the first 12 courses of epirubicin or doxorubicin respectively (P = 0.014). The median survival was 12.5 months in the epirubicin arm and 8.0 months in the doxorubicin arm (P = 0.042). Our data indicate that in advanced prostatic carcinoma, a weekly epirubicin regimen may give rapid palliative results, similar to that of doxorubicin, but with less side-effects

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure

    Intrinsically conductive polymers for striated cardiac muscle repair

    Get PDF
    One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult
    • …
    corecore