52,225 research outputs found

    Temperature-dependent ion mixing and diffusion during sputtering of thin films of CrSi_2 on silicon

    Get PDF
    Measurements of sputtering yields and composition profiles have been carried out using backscattering spectrometry for samples of CrSi_2 on Si irradiated with 200‐keV Xe ions. When the CrSi_2 layer is thinner than the ion range, the sputtering yield ratio of Si to Cr increases from 3.5 for room‐temperature irradiation to 65 at 290 °C. For a thick sample, the corresponding increase is from 2.4 to 4.0. only. These changes are explained in terms of a rise in the Si surface concentration at 290 °C. The driving force for this process seems to be the establishment of stoichiometric CrSi_2 compound. Transport of Si to the surface is by ion mixing in the thin sample and thermal diffusion through the thick layer

    Strongly misaligned triple system in SR 24 revealed by ALMA

    Get PDF
    We report the detection of the 1.3 mm continuum and the molecular emission of the disks of the young triple system SR24 by analyzing ALMA (The Atacama Large Millimeter/Submillimter Array) subarcsecond archival observations. We estimate the mass of the disks (0.025 M ⊙ and 4 × 10‑5 M ⊕ for SR24S and SR24N, respectively) and the dynamical mass of the protostars (1.5 M ⊙ and 1.1 M ⊙). A kinematic model of the SR24S disk to fit its C18O (2-1) emission allows us to develop an observational method to determine the tilt of a rotating and accreting disk. We derive the size, inclination, position angle, and sense of rotation of each disk, finding that they are strongly misaligned (108^circ ) and possibly rotate in opposite directions as seen from Earth, in projection. We compare the ALMA observations with 12CO SMA archival observations, which are more sensitive to extended structures. We find three extended structures and estimate their masses: a molecular bridge joining the disks of the system, a molecular gas reservoir associated with SR24N, and a gas streamer associated with SR24S. Finally, we discuss the possible origin of the misaligned SR24 system, concluding that a closer inspection of the northern gas reservoir is needed to better understand it. Fil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas. Instituto Argentino de RadioastronomĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto Argentino de RadioastronomĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Zapata, L. A.. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Gabbasov, R.. Universidad AutĂłnoma del Estado de Hidalgo; MĂ©xic

    Spatial birth-and-death processes in random environment

    Full text link
    We consider birth-and-death processes of objects (animals) defined in Zd{\bf Z}^d having unit death rates and random birth rates. For animals with uniformly bounded diameter we establish conditions on the rate distribution under which the following holds for almost all realizations of the birth rates: (i) the process is ergodic with at worst power-law time mixing; (ii) the unique invariant measure has exponential decay of (spatial) correlations; (iii) there exists a perfect-simulation algorithm for the invariant measure. The results are obtained by first dominating the process by a backwards oriented percolation model, and then using a multiscale analysis due to Klein to establish conditions for the absence of percolation.Comment: 48 page

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    Public Health England's recovery tools: potential teaching resources?

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Training to combat chemical and radiation accidents, incidents or attacks is critical for health professionals due to recent events involving these hazards or their use as unconventional weapons, such as the use of the nerve agent novichok in Salisbury, UK. Health professionals need to have appropriate knowledge and skills to effectively respond to future events involving any of these substances, which requires a rapid and coordinated response from different professionals to protect the environment and minimise the number of people exposed and reduce morbidity and mortality. However, despite chemical and radiation incidents becoming increasingly prevalent, literature reviews have shown that there is a lack of teaching of appropriate competences to face future crises in Europe, particularly amongst clinicians and other health professionals that would be part of the initial response. Thus, De Montfort University (DMU, UK) in collaboration with different academics from the University of Alcalá (Spain) and researchers from Public Health England (PHE) with comprehensive experience in environmental decontamination and restoration, have created a short training course for providing undergraduate/postgraduate students with basic skills to respond to chemical incidents, basic skills that are based on the major competences recently identified by the European Commission [1]. This novel training has been tested with students from different backgrounds in various European universities, recording high degrees of acquisition of the various basic competences that we developed to initially respond to chemical events [2]. To develop the practical part of this chemical training, we have incorporated the novel guidance and methodology developed by PHE to successfully tailor a protection and recovery response to any incident involving chemical substances, which is available in the “UK Recovery Handbook for Chemical Incidents” [3] and its web-based tools: “Chemical Recovery Navigation Tool” (CRNT, [4]) and “Chemical Recovery Record Form” (CRRF, [5]). These innovative resources aid the user to select effective protection, decontamination and restoration techniques or strategies from a pool of up-to-date options applicable to different environments according to the physicochemical properties of the chemical(s) involved and the area affected. The CRNT is accompanied by the CRRF, which facilitates collection and analysis of the necessary data to inform decisions, and an e-learning resource named “Chemical Recovery: Background” (CRB, [6]), which could facilitate the learning of environmental decontamination and restoration. We are currently developing a short training course to cover minor radiation incidents; this radiation training will follow the same methods used to develop the chemical training, but with the specific PHE recovery tools to tackle such events, specifically the “UK Recovery Handbooks for Radiation Incidents” [7] and its associated web-based tools “Radiation Recovery Navigation Tool” (Rad RNT, [8]), one for each environment: food production systems, inhabited areas and drinking water supplies. This communication will explore the use of the PHE’s Recovery Navigation Tools as potential resources to facilitate the acquisition of basic knowledge to tailor protection and recovery interventions for minor chemical and radiation incidents to protect the public
    • 

    corecore