5 research outputs found

    Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval

    No full text
    A central idea in plasmonics and metamaterials is to interpret scattering resonances as resulting from hybridization of electric dipoles. Recent developments in metamaterials as well as in plasmonic Fano systems have further included magnetic dipoles and electric quadrupoles in this reasoning. We derive a method to retrieve dipole and quadrupole polarizability tensors of nano scatterers from full-wave simulations, which allows us to underpin this intuitive reasoning by quantifying the existent modes and their strengths in complex nano antennas. By application to a dolmen plasmon structure, we show how the retrieval sheds new light on plasmon induced transparency. Further, we show how to implement radiative corrections to a dipoleā€“quadrupole model applicable when scatterers are placed near a surface, sphere, or stratified medium, similar to the known correction of dipole polarizabilities by the local density of optical states. We demonstrate how this model allows us to interpret near field excitation data taken on plasmon antennas deposited on a high-index substrate

    Plasmonic Band Structure Controls Single-Molecule Fluorescence

    No full text
    Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that already small lattices enable highly directional and enhanced emission from single fluorescent molecules in the central aperture. Even for clusters just four unit cells across, the directionality is set by the plasmonic crystal band structure, as confirmed by full-wave numerical simulations. This realization of plasmonic phase array antennas driven by single quantum emitters opens a flexible toolbox to engineer fluorescence and its detection

    Angle-Resolved Cathodoluminescence Imaging Polarimetry

    No full text
    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductors. This technique paves the way for in-depth analysis of the emission mechanisms of nanostructured devices as well as macroscopic media

    High Internal Emission Efficiency of Silicon Nanoparticles Emitting in the Visible Range

    Get PDF
    Light-emitting silicon nanoparticles (Si-NPs) are interesting for lighting applications due to their nontoxicity, chemical robustness, and photostability; however, they are not practically considered due to their low emission efficiencies. While large Si-NPs emitting in the red to infrared spectral region show ensemble emission quantum efficiencies up to 60%, the emission efficiencies of smaller Si-NPs, emitting in the visible spectral range, are far lower, typically below 10ā€“20%. In this work, we test this efficiency limit by measuring for the first time the internal quantum efficiency (IQE), i.e., the higher bound of the emission quantum efficiency, considering only the emissive NPs within the ensemble, of Si-NPs emitting in the visible spectral range between 350 and 650 nm. On the basis of photoluminescence decay measurements in a Drexhage geometry, we show that Si-NPs with organic passivation (C:Si-NPs) can have high direct-bandgap-like radiative rates, which enable a high IQE over āˆ¼50%. In this way, we demonstrate that Si-NPs can in principle be considered a competitive candidate as a phosphor in lighting applications and medical imaging also in the visible spectral range. Moreover, our findings show that the reason for the much lower ensemble emission efficiency is due to the fact that the ensemble consists of a low fraction of emissive NPs, most likely due to a low PL ā€œblinkingā€ duty cycle

    Calibrating and Controlling the Quantum Efficiency Distribution of Inhomogeneously Broadened Quantum Rods by Using a Mirror Ball

    No full text
    We demonstrate that a simple silver coated ball lens can be used to accurately measure the entire distribution of radiative transition rates of quantum dot nanocrystals. This simple and cost-effective implementation of Drexhageā€™s method that uses nanometer-controlled optical mode density variations near a mirror, not only allows an extraction of calibrated ensemble-averaged rates, but for the first time also to quantify the full inhomogeneous dispersion of radiative and non radiative decay rates across thousands of nanocrystals. We apply the technique to novel ultrastable CdSe/CdS dot-in-rod emitters. The emitters are of large current interest due to their improved stability and reduced blinking. We retrieve a room-temperature ensemble average quantum efficiency of 0.87 Ā± 0.08 at a mean lifetime around 20 ns. We confirm a log-normal distribution of decay rates as often assumed in literature, and we show that the rate distribution-width, that amounts to about 30% of the mean decay rate, is strongly dependent on the local density of optical states
    corecore