103 research outputs found

    Momentum-resolved evolution of the Kondo lattice into 'hidden-order' in URu2Si2

    Full text link
    We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Gamma, Z and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature `hidden-order' (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands, related to the Kondo lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Gamma and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Gamma and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.Comment: Updated published version. Mansucript + Supplemental Material (8 pages, 9 figures). Submitted 16 September 201

    Model-Independent Sum Rule Analysis Based on Limited-Range Spectral Data

    Full text link
    Partial sum rules are widely used in physics to separate low- and high-energy degrees of freedom of complex dynamical systems. Their application, though, is challenged in practice by the always finite spectrometer bandwidth and is often performed using risky model-dependent extrapolations. We show that, given spectra of the real and imaginary parts of any causal frequency-dependent response function (for example, optical conductivity, magnetic susceptibility, acoustical impedance etc.) in a limited range, the sum-rule integral from zero to a certain cutoff frequency inside this range can be safely derived using only the Kramers-Kronig dispersion relations without any extra model assumptions. This implies that experimental techniques providing both active and reactive response components independently, such as spectroscopic ellipsometry in optics, allow an extrapolation-independent determination of spectral weight 'hidden' below the lowest accessible frequency.Comment: 5 pages, 3 figure

    Pairing in cuprates from high energy electronic states

    Full text link
    The in-plane optical conductivity of Bi2Sr2CaCu2O8+d thin films with small carrier density (underdoped) up to large carrier density (overdoped) is analyzed with unprecedented accuracy. Integrating the conductivity up to increasingly higher energies points to the energy scale involved when the superfluid condensate builds up. In the underdoped sample, states extending up to 2 eV contribute to the superfluid. This anomalously large energy scale may be assigned to a change of in-plane kinetic energy at the superconducting transition, and is compatible with an electronic pairing mechanism.Comment: 11 pages, 3 figure

    Momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals measured by angle resolved photoemission spectroscopy

    Get PDF
    We use angle resolved photoemission spectroscopy (ARPES) to study the momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals. We find that the Gamma hole pocket is fully gapped below the superconducting transition temperature. The value of the superconducting gap is 15 +- 1.5 meV and its anisotropy around the hole pocket is smaller than 20% of this value. This is consistent with an isotropic or anisotropic s-wave symmetry of the order parameter or exotic d-wave symmetry with nodes located off the Fermi surface sheets. This is a significant departure from the situation in the cuprates, pointing to possibility that the superconductivity in the iron arsenic based system arises from a different mechanism.Comment: 4 pages, 3 figure

    Optical Sum Rule anomalies in the High-Tc Cuprates

    Full text link
    We provide a brief summary of the observed sum rule anomalies in the high-Tc_c cuprate materials. A recent issue has been the impact of a non-infinite frequency cutoff in the experiment. In the normal state, the observed anomalously high temperature dependence can be explained as a `cutoff effect'. The anomalous rise in the optical spectral weight below the superconducting transition, however, remains as a solid experimental observation, even with the use of a cutoff frequency.Comment: 4 pages, 2 figures, very brief review of optical sum rule anomal
    • …
    corecore