32 research outputs found

    High field hybrid photoinjector electron source for advanced light source applications

    Get PDF
    The production of high spectral brilliance radiation from electron beam sources depends critically on the electron beam qualities. One must obtain very high electron beam brightness, implying simultaneous high peak current and low emittance. These attributes are enabled through the use of very high field acceleration in a radio-frequency (rf) photoinjector source. Despite the high fields currently utilized, there is a limit on the achievable peak current in high brightness operation, in the range of tens of Ampere. This limitation can be overcome by the use of a hybrid standing wave/traveling wave structure; the standing wave portion provides acceleration at a high field from the photocathode, while the traveling wave part yields strong velocity bunching. This approach is explored here in a C-band scenario, at field strengths (>100 MV/m) at the current state-of-the-art. It is found that one may arrive at an electron beam with many hundreds of Amperes with well-sub-micron normalized emittance. This extremely compact injector system also possesses attractive simplification of the rf distribution system by eliminating the need for an rf circulator. We explore the use of this device in a compact 400 MeV-class source, driving both inverse Compton scattering and free-electron laser radiation sources with unique, attractive properties

    An Ultra-Compact X-Ray Free-Electron Laser

    Get PDF
    In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV/m. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 meters. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by ~50 nm-rad normalized emittances. These beams, when injected into innovative, short-period (1-10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine which may profit from this new model of performing XFEL science.Comment: 80 pages, 24 figure

    Generation and acceleration of electron bunches from a plasma photocathode

    Get PDF
    Plasma waves generated in the wake of intense, relativistic laser1,2 or particle beams3,4 can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected5,6 or captured from the background plasma7,8. Here we demonstrate optically triggered injection9–11 and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical11 density down-ramp injection12–16 and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness17. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams

    Improved magnetization in sputtered dysprosium thin films

    Get PDF
    50nm thick nanogranular polycrystalline dysprosium thin films have been prepared via ultra-high vacuum DC sputtering on SiO2 and Si wafers. The maximum in-plane spontaneous magnetization at T = 4K was found to be MS4K = 3.28T for samples deposited on wafers heated to 350C with a Neel point of TN = 173K and a ferromagnetic transition at TC = 80K, measured via zero field cooled field cooled magnetization measurements, close to single crystal values. The slightly reduced magnetization is explained in the light of a metastable face centered cubic crystal phase which occurred at the seed interface and granularity related effects, that are still noticeably influential despite an in-plane magnetic easy axis. As deposited samples showed reduced magnetization of MS4K = 2.26T, however their ferromagnetic transition shifted to a much higher temperature of TC = 172K and the antiferromagnetic phase was completely suppressed probably as a result of strain.Comment: 16 pages, 3 figure

    Experimental characterization of the transverse phase space of a 60-MeV electron beam through a compressor chicane

    Get PDF
    Space charge and coherent synchrotron radiation may deteriorate electron beam quality when the beam passes through a magnetic bunch compressor. This paper presents the transverse phase-space tomographic measurements for a compressed beam at 60 MeV, around which energy the first stage of magnetic bunch compression takes place in most advanced linacs. Transverse phase-space bifurcation of a compressed beam is observed at that energy, but the degree of the space charge-induced bifurcation is appreciably lower than the one observed at 12 MeV

    REMOVAL OF RESIDUAL CHIRP IN COMPRESSED BEAMS USING A PASSIVE WAKEFIELD TECHNIQUE

    No full text
    Abstract The removal of residual chirp in XFELs is of paramount importance for efficient lasing. Although current S-band XFELs remove the unwanted residual chirp using off-crest acceleration after the final bunch compressor, this technique is not possible for XFELs with soft X-ray lines as there are no further accelerating structures. The off-crest dechirping technique is also expensive for future superconducting XFELs. In response, RadiaBeam Systems presents its work, building upon the theoretical work of Bane and Stupakov [1], in RF-free residual chirp mitigation using only passive techniques. Beam-induced longitudinal wakefields are produced with opposing corrugated plates which allow for an entirely RF-free chirp removal. Theory, engineering, and experimental results are presented
    corecore