633 research outputs found
Relativistic Description of Exclusive Semileptonic Decays of Heavy Mesons
Using quasipotential approach, we have studied exclusive semileptonic decays
of heavy mesons with the account of relativistic effects. Due to more complete
relativistic description of the quark more precise expressions for
semileptonic form factors are obtained. Various differential distributions in
exclusive semileptonic decays of heavy mesons are calculated. It is argued that
consistent account of relativistic effects and HQET motivated choice of the
parameters of quark-antiquark potential allow to get reliable value for the
ratio in the decay as well as the
ratio~. All calculated branching
ratios are in accord with available experimental data.Comment: 18 pages, LATEX, 2 figures inclosed + 4 Postscript figure
Quark-antiquark potential with retardation and radiative contributions and the heavy quarkonium mass spectra
The charmonium and bottomonium mass spectra are calculated with the
systematic account of all relativistic corrections of order v^2/c^2 and the
one-loop radiative corrections. Special attention is paid to the contribution
of the retardation effects to the spin-independent part of the quark-antiquark
potential, and a general approach to accounting for retardation effects in the
long-range (confining) part of the potential is presented. A good fit to
available experimental data on the mass spectra is obtained.Comment: 20 pages, revtex, 2 Postscript figure
Exclusive semileptonic B decays to radially excited D mesons
Exclusive semileptonic B decays to radially excited charmed mesons are
investigated at the first order of the heavy quark expansion. The arising
leading and subleading Isgur-Wise functions are calculated in the framework of
the relativistic quark model. It is found that the 1/m_Q corrections play an
important role and substantially modify results. An interesting interplay
between different corrections is found. As a result the branching ratio for the
B-> D'e\nu decay is essentially increased by 1/m_Q corrections, while the one
for B-> D*'e\nu is only slightly influenced by them.Comment: 19 pages, revtex, 6 figures, uses rotating.st
Collective modes for an array of magnetic dots in the vortex state
The dispersion relations for collective magnon modes for square-planar arrays
of vortex-state magnetic dots, having closure magnetic flux are calculated. The
array dots have no direct contact between each other, and the sole source of
their interaction is the magnetic dipolar interaction. The magnon formalism
using Bose operators along with translational symmetry of the lattice, with the
knowledge of mode structure for the isolated dot, allows the diagonalization of
the system Hamiltonian giving the dispersion relation. Arrays of vortex-state
dots show a large variety of collective mode properties, such as positive or
negative dispersion for different modes. For their description, not only
dipolar interaction of effective magnetic dipoles, but non-dipolar terms common
to higher multipole interaction in classical electrodynamics can be important.
The dispersion relation is shown to be non-analytic as the value of the
wavevector approaches zero for all dipolar active modes of the single dot. For
vortex-state dots the interdot interaction is not weak, because, the dynamical
part (in contrast to the static magnetization of the vortex state) dot does not
contain the small parameter, the ratio of vortex core size to the dot radius.
This interaction can lead to qualitative effects like the formation of modes of
angular standing waves instead of modes with definite azimuthal number known
for the insolated vortex state dot
Relativistic Description of Exclusive Heavy-to-Light Semileptonic Decays
The method of calculating electroweak decay matrix elements between
heavy-heavy and heavy-light meson states is developed in the framework of
relativistic quark model based on the quasipotential approach in quantum field
theory. This method is applied for the study of exclusive semileptonic
decays. It is shown that the large value of the final
meson recoil momentum allows for the expansion in inverse powers of
-quark mass of the decay form factors at , where is a momentum
carried by the lepton pair. This expansion considerably simplifies the
analysis of these decays and is carried out up to the second order. The
-dependence of the form factors is investigated. It is found that the
-behaviour of the axial form factor is different from the other form
factors. It is argued that the ratios and are sensitive probes of the
-dependence, and thus their experimental measurement may discriminate
between different approaches. We find s and s. The relation between semileptonic
and rare radiative -decays is discussed.Comment: 20 pages, two figures included, LATE
Solvent effect on kinetics and mechanism of the phospha-michael reaction of tertiary phosphines with unsaturated carboxylic acids
In aprotic solvents, kinetics of the reaction of triphenylphosphine with acrylic acid is second order in the acid and first order in the phosphine. To find the most suitable model to describe the solvent effect on this reaction, the third-order rate constants in a series of 16 aprotic solvents were analyzed using one- and multiparameter regressions within the framework of the Kamlet-Taft, the Catalán, the Gutmann-Mayer, and the Koppel-Palm equations. The best result gives a two-parameter model constructed on the basis of the Reichardt polarity ET and the basicity B from the Koppel-Palm equation, with the weak positive effect of the ET parameter on the reaction rate and very strong negative effect of the B parameter. The results obtained give further evidence to the previously suggested a stepwise mechanism, which involves the initial formation of a zwitterionic intermediate, followed by the proton transfer from the second molecule of acrylic acid to the generated carbanionic center in the rate-determining step. © 2014 Wiley Periodicals, Inc
Weak decays of the B_c meson to charmonium and D mesons in the relativistic quark model
Semileptonic and nonleptonic decays of the B_c meson to charmonium and D
mesons are studied in the framework of the relativistic quark model. The decay
form factors are explicitly expressed through the overlap integrals of the
meson wave functions in the whole accessible kinematical range. The
relativistic meson wave functions are used for the calculation of the decay
rates. The obtained results are compared with the predictions of other
approaches.Comment: 27 pages, 17 figures, 1 figure and 1 reference added, version to
appear in Phys. Rev.
Nonlinear viscosity and velocity distribution function in a simple longitudinal flow
A compressible flow characterized by a velocity field is
analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook
kinetic model. The sign of the control parameter (the longitudinal deformation
rate ) distinguishes between an expansion () and a condensation ()
phenomenon. The temperature is a decreasing function of time in the former
case, while it is an increasing function in the latter. The non-Newtonian
behavior of the gas is described by a dimensionless nonlinear viscosity
, that depends on the dimensionless longitudinal rate . The
Chapman-Enskog expansion of in powers of is seen to be only
asymptotic (except in the case of Maxwell molecules). The velocity distribution
function is also studied. At any value of , it exhibits an algebraic
high-velocity tail that is responsible for the divergence of velocity moments.
For sufficiently negative , moments of degree four and higher may diverge,
while for positive the divergence occurs in moments of degree equal to or
larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat
flux plus other minor changes added. Revised version accepted for publication
in PR
Magnetic vortex as a ground state for micron-scale antiferromagnetic samples
Here we consider micron-sized samples with any axisymmetric body shape and
made with a canted antiferromagnet, like hematite or iron borate. We find that
its ground state can be a magnetic vortex with a topologically non-trivial
distribution of the sublattice magnetization and planar coreless
vortex-like structure for the net magnetization . For
antiferromagnetic samples in the vortex state, in addition to low-frequency
modes, we find high-frequency modes with frequencies over the range of hundreds
of gigahertz, including a mode localized in a region of radius 30--40 nm
near the vortex core.Comment: 20 pages, 1 figur
- …