1,792 research outputs found
Current facilitation by plasmon resonances between parallel wires of finite length
The current voltage (IV) characteristics for perpendicular transport through
two sequentially coupled wires of finite length is calculated analytically. The
transport within a Coulomb blockade step is assisted by plasmon resonances that
appear as steps in the IV characteristics with positions and heights depending
on inter- and intrawire interactions. In particular, due to the interwire
interactions, the peak positions shift to lower voltages in comparison to the
noninteracting wires which reflects the facilitation of current by
interactions. The interwire interactions are also found to enhance the
thermally activated current.Comment: 5 pages, 1figur
Increasing of entanglement entropy from pure to random quantum critical chains
It is known that the entropy of a block of spins of size embedded in an
infinite pure critical spin chain diverges as the logarithm of with a
prefactor fixed by the central charge of the corresponding conformal field
theory. For a class of strongly random spin chains, it has been shown that the
correspondent block entropy still remains universal and diverges
logarithmically with an "effective" central charge. By computing the
entanglement entropy for a family of models which includes the -states
random Potts chain and the clock model, we give some definitive answer to
some recent conjectures about the behaviour of the effective central charge. In
particular, we show that the ratio between the entanglement entropy in the pure
and in the disordered system is model dependent and we provide a series of
critical models where the entanglement entropy grows from the pure to the
random case.Comment: 4 pages, 2 eps figures, added reference
Two dimensional anisotropic non Fermi-liquid phase of coupled Luttinger liquids
We show using bosonization techniques, that strong forward scattering
interactions between one dimensional spinless Luttinger liquids (LL) can
stabilize a phase where charge-density wave, superconducting and transverse
single particle hopping perturbations are irrelevant. This new phase retains
its LL like properties in the directions of the chains, but with relations
between exponents modified by the transverse interactions, whereas, it is a
perfect insulator in the transverse direction. The mechanism that stabilizes
this phase are strong transverse charge density wave fluctuations at
incommensurate wavevector, which frustrates crystal formation by preventing
lock-in of the in-chain density waves.Comment: (4 pages, 2 figures
Melting of two dimensional solids on disordered substrate
We study 2D solids with weak substrate disorder, using Coulomb gas
renormalisation. The melting transition is found to be replaced by a sharp
crossover between a high liquid with thermally induced dislocations, and a
low glassy regime with disorder induced dislocations at scales larger than
which we compute (, the Larkin and
translational correlation lengths). We discuss experimental consequences,
reminiscent of melting, such as size effects in vortex flow and AC response in
superconducting films.Comment: 4 pages, uses RevTeX, Amssymb, multicol,eps
Who Is In Charge, and Who Should Be? The Disciplinary Role of the Commander in Military Justice Systems
BackgroundStandard therapy for newly diagnosed glioblastoma is radiotherapy plus temozolomide. In this phase 3 study, we evaluated the effect of the addition of bevacizumab to radiotherapy-temozolomide for the treatment of newly diagnosed glioblastoma. MethodsWe randomly assigned patients with supratentorial glioblastoma to receive intravenous bevacizumab (10 mg per kilogram of body weight every 2 weeks) or placebo, plus radiotherapy (2 Gy 5 days a week; maximum, 60 Gy) and oral temozolomide (75 mg per square meter of body-surface area per day) for 6 weeks. After a 28-day treatment break, maintenance bevacizumab (10 mg per kilogram intravenously every 2 weeks) or placebo, plus temozolomide (150 to 200 mg per square meter per day for 5 days), was continued for six 4-week cycles, followed by bevacizumab monotherapy (15 mg per kilogram intravenously every 3 weeks) or placebo until the disease progressed or unacceptable toxic effects developed. The coprimary end points were investigator-assessed progression-free survival and overall survival. ResultsA total of 458 patients were assigned to the bevacizumab group, and 463 patients to the placebo group. The median progression-free survival was longer in the bevacizumab group than in the placebo group (10.6 months vs. 6.2 months; stratified hazard ratio for progression or death, 0.64; 95% confidence interval [CI], 0.55 to 0.74; P<0.001). The benefit with respect to progression-free survival was observed across subgroups. Overall survival did not differ significantly between groups (stratified hazard ratio for death, 0.88; 95% CI, 0.76 to 1.02; P=0.10). The respective overall survival rates with bevacizumab and placebo were 72.4% and 66.3% at 1 year (P=0.049) and 33.9% and 30.1% at 2 years (P=0.24). Baseline health-related quality of life and performance status were maintained longer in the bevacizumab group, and the glucocorticoid requirement was lower. More patients in the bevacizumab group than in the placebo group had grade 3 or higher adverse events (66.8% vs. 51.3%) and grade 3 or higher adverse events often associated with bevacizumab (32.5% vs. 15.8%). ConclusionsThe addition of bevacizumab to radiotherapy-temozolomide did not improve survival in patients with glioblastoma. Improved progression-free survival and maintenance of baseline quality of life and performance status were observed with bevacizumab; however, the rate of adverse events was higher with bevacizumab than with placebo.
Freezing of dynamical exponents in low dimensional random media
A particle in a random potential with logarithmic correlations in dimensions
is shown to undergo a dynamical transition at . In
exact results demonstrate that , the static glass transition
temperature, and that the dynamical exponent changes from at high temperature to in the glass phase. The same
formulae are argued to hold in . Dynamical freezing is also predicted in
the 2D random gauge XY model and related systems. In a mapping between
dynamics and statics is unveiled and freezing involves barriers as well as
valleys. Anomalous scaling occurs in the creep dynamics.Comment: 5 pages, 2 figures, RevTe
- …