85 research outputs found

    Non equilibrium inertial dynamics of colloidal systems

    Full text link
    We consider the properties of a one dimensional fluid of brownian inertial hard-core particles, whose microscopic dynamics is partially damped by a heat-bath. Direct interactions among the particles are represented as binary, instantaneous elastic collisions. Collisions with the heath bath are accounted for by a Fokker-Planck collision operator, whereas direct collisions among the particles are treated by a well known method of kinetic theory, the Revised Enskog Theory. By means of a time multiple time-scale method we derive the evolution equation for the average density. Remarkably, for large values of the friction parameter and/or of the mass of the particles we obtain the same equation as the one derived within the dynamic density functional theory (DDF). In addition, at moderate values of the friction constant, the present method allows to study the inertial effects not accounted for by DDF method. Finally, a numerical test of these corrections is provided.Comment: 13 pages+ 3 Postscript figure

    Dynamics of Air-Fluidized Granular System Measured by the Modulated Gradient Spin-echo

    Full text link
    The power spectrum of displacement fluctuation of beads in the air-fluidized granular system is measured by a novel NMR technique of modulated gradient spin-echo. The results of measurement together with the related spectrum of the velocity fluctuation autocorrelation function fit well to an empiric formula based on to the model of bead caging between nearest neighbours; the cage breaks up after a few collisions \cite{Menon1}. The fit yields the characteristic collision time, the size of bead caging and the diffusion-like constant for different degrees of system fluidization. The resulting mean squared displacement increases proportionally to the second power of time in the short-time ballistic regime and increases linearly with time in the long-time diffusion regime as already confirmed by other experiments and simulations.Comment: 4 figures. Submited to Physical Review Letters, April 200

    Phase-space approach to dynamical density functional theory

    Full text link
    We consider a system of interacting particles subjected to Langevin inertial dynamics and derive the governing time-dependent equation for the one-body density. We show that, after suitable truncations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, and a multiple time scale analysis, we obtain a self-consistent equation involving only the one-body density. This study extends to arbitrary dimensions previous work on a one-dimensional fluid and highlights the subtelties of kinetic theory in the derivation of dynamical density functional theory

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    A new vehicular traffic flow model based on a stochastic jump process in vehicle acceleration and braking is introduced. It is based on a master equation for the single car probability density in space, velocity and acceleration with an additional vehicular chaos assumption and is derived via a Markovian ansatz for car pairs. This equation is analyzed using simple driver interaction models in the spatial homogeneous case. Velocity distributions in stochastic equilibrium, together with the car density dependence of their moments, i.e. mean velocity and scattering and the fundamental diagram are presented.Comment: 27 pages, 6 figure

    Correlations and Renormalization in Lattice Gases

    Full text link
    A complete formulation is given of an exact kinetic theory for lattice gases. This kinetic theory makes possible the calculation of corrections to the usual Boltzmann / Chapman-Enskog analysis of lattice gases due to the buildup of correlations. It is shown that renormalized transport coefficients can be calculated perturbatively by summing terms in an infinite series. A diagrammatic notation for the terms in this series is given, in analogy with the diagrammatic expansions of continuum kinetic theory and quantum field theory. A closed-form expression for the coefficients associated with the vertices of these diagrams is given. This method is applied to several standard lattice gases, and the results are shown to correctly predict experimentally observed deviations from the Boltzmann analysis.Comment: 94 pages, pure LaTeX including all figure

    Liquid-Solid Transition of Hard Spheres Under Gravity

    Full text link
    We investigate the liquid-solid transition of two dimensional hard spheres in the presence of gravity. We determine the transition temperature and the fraction of particles in the solid regime as a function of temperature via Even-Driven molecular dynamics simulations and compare them with the theoretical predictions. We then examine the configurational statistics of a vibrating bed from the view point of the liquid-solid transition by explicitly determining the transition temperature and the effective temperature, T, of the bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure

    Global validity of the Master kinetic equation for hard-sphere systems

    Get PDF
    Following the recent establishment of an exact kinetic theory realized by the Master kinetic equation which describes the statistical behavior of the Boltzmann-Sinai Classical Dynamical System (CDS), in this paper the problem is posed of the construction of the related global existence and regularity theorems. For this purpose, based on the global prescription of the same CDS for arbitrary single- and multiplecollision events, first global existence is extablished for the N-body Liouville equation which is written in Lagrangian differential and integral forms. This permits to reach the proof of global existence both of generic N-body probability density functions (PDF) as well as of particular solutions which maximize the statistical Boltzmann-Shannon entropy and are factorized in terms of the corresponding 1-body PDF. The latter PDF is shown to be uniquely defined and to satisfy the Master kinetic equation globally in the extended 1-body phase space. Implications concerning the global validity of the asymptotic Boltzmann equation and Boltzmann H-theorem are discussed
    corecore