2 research outputs found

    Eco-friendly synthesis from industrial wastewater of Fe and Cu nanoparticles over NaX zeolite and activity in 4-nitrophenol reduction

    Get PDF
    We deposited Fe and Cu over zeolite NaX (Fe/NaX and Cu/NaX) by adsorption from effluent industrial wastewater. We synthesized the zeolite NaX by the hydrothermal method. 5g of NaX completely adsorbed 350 and 380mg of Fe and Cu from the industrial wastewater, respectively, in 6h. The distribution of Fe and Cu over the NaX was uniform and amounted at 14 and 18mass%, respectively. Fe and Cu modify the morphology of the NaX zeolite: the particle size increased from 9\uce\ubcm to 10\uce\ubcm for the former and decreased to 3\uce\ubcm for the latter. Fe/NaX and Cu/NaX are less crystalline than NaX. BET analysis showed that the specific surface area decreased by 30% and 50% compared to NaX for Fe/NaX and Cu/NaX, but the ratio between meso- and micropores increased by 7 and 13 times, respectively. Fe/NaX and Cu/NaX synthesized by adsorption from industrial wastewater reduced +99% of 4-p-nitrophenol to 4-aminophenol in less than 100s, which is comparable to noble metal

    Water treatment: Mn-TiO2 synthesized by ultrasound with increased aromatic adsorption

    No full text
    Pharma-products are mostly single or multiple cyclic compounds. They pollute surface water and are persistent in the aquatic ecosystem. When irradiated by UV light, TiO2 catalysts cleave or degrade organic contaminants in water. Removal of organics by photocatalysis results from a synergistic effect of adsorption and photocatalysis. Synthesis of catalysts by ultrasound (US) produces high surface area and porous solids. Here, we synthesized Mn-doped TiO2 with a US-assisted sol-gel method. Compared to the classical synthesis, US increased the BET surface area from 83 m(2) g(-1) to 90 m(2) g(-1) in the Mn-TiO2 sample and from 9.0 m(2) g(-1) to 53 m(2) g(-1) in the control TiO2. Accordingly, acetaminophen and amoxicillin adsorption increased from 44% to 52%, and from 34% to 94% for the Mn-TiO2 obtained in absence and presence of US, respectively. When in a mixture, the two drugs strongly compete for adsorption on TiO2
    corecore