24,338 research outputs found

    Metal-insulator transition through a semi-Dirac point in oxide nanostructures: VO2_2 (001) layers confined within TiO2_2

    Full text link
    Multilayer (TiO2_2)m_m/(VO2_2)n_n nanostructures (d1d^1 - d0d^0 interfaces with no polar discontinuity) show a metal-insulator transition with respect to the VO2_2 layer thickness in first principles calculations. For nn β‰₯\geq 5 layers, the system becomes metallic, while being insulating for nn = 1 and 2. The metal-insulator transition occurs through a semi-Dirac point phase for nn = 3 and 4, in which the Fermi surface is point-like and the electrons behave as massless along the zone diagonal in k-space and as massive fermions along the perpendicular direction. We provide an analysis of the evolution of the electronic structure through this unprecedented insulator-to-metal transition, and identify it as resulting from quantum confinement producing a non-intuitive orbital ordering on the V d1d^1 ions, rather than being a specific oxide interface effect. Spin-orbit coupling does not destroy the semi-Dirac point for the calculated ground state, where the spins are aligned along the rutile c-axis, but it does open a substantial gap if the spins lie in the basal plane.Comment: 9 pages, 8 figure

    Basic research in fan source noise: Inlet distortion and turbulence noise

    Get PDF
    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively

    Electron Confinement, Orbital Ordering, and Orbital Moments in d0d^0-d1d^1 Oxide Heterostructures

    Full text link
    The (SrTiO3_3)m_m/(SrVO3_3)n_n d0βˆ’d1d^0-d^1 multilayer system is studied with first principles methods through the observed insulator-to-metal transition with increasing thickness of the SrVO3_3 layer. When correlation effects with reasonable magnitude are included, crystal field splittings from the structural relaxations together with spin-orbit coupling (SOC) determines the behavior of the electronic and magnetic structures. These confined slabs of SrVO3_3 prefer QorbQ_{orb}=(Ο€,Ο€\pi,\pi) orbital ordering of β„“z=0\ell_z = 0 and β„“z=βˆ’1\ell_z = -1 (jz=βˆ’1/2j_z=-1/2) orbitals within the plane, accompanied by QspinQ_{spin}=(0,0) spin order (ferromagnetic alignment). The result is a SOC-driven ferromagnetic Mott insulator. The orbital moment of 0.75 ΞΌB\mu_B strongly compensates the spin moment on the β„“z=βˆ’1\ell_z = -1 sublattice. The insulator-metal transition for n=1β†’5n = 1 \to 5 (occurring between nn=4 and nn=5) is reproduced. Unlike in the isoelectronic d0βˆ’d1d^0-d^1 TiO2_2/VO2_2 (rutile structure) system and in spite of some similarities in orbital ordering, no semi-Dirac point [{\it Phys. Rev. Lett.} {\bf 102}, 166803 (2009)] is encountered, but the insulator-to-metal transition occurs through a different type of unusual phase. For n=5 this system is very near (or at) a unique semimetallic state in which the Fermi energy is topologically determined and the Fermi surface consists of identical electron and hole Fermi circles centered at kk=0. The dispersion consists of what can be regarded as a continuum of radially-directed Dirac points, forming a "Dirac circle".Comment: 9 pages, 8 figure

    Decentralized formation control with connectivity maintenance and collision avoidance under limited and intermittent sensing

    Full text link
    A decentralized switched controller is developed for dynamic agents to perform global formation configuration convergence while maintaining network connectivity and avoiding collision within agents and between stationary obstacles, using only local feedback under limited and intermittent sensing. Due to the intermittent sensing, constant position feedback may not be available for agents all the time. Intermittent sensing can also lead to a disconnected network or collisions between agents. Using a navigation function framework, a decentralized switched controller is developed to navigate the agents to the desired positions while ensuring network maintenance and collision avoidance.Comment: 8 pages, 2 figures, submitted to ACC 201
    • …
    corecore