11,218 research outputs found
Simulating Growth and Development of Tomato Crop
Crop models are powerful tools to test hypotheses, synthesize and convey knowledge, describe and understand complex systems and compare different scenarios. Models may be used for prediction and planning of production, in decision support systems and control of the greenhouse climate, water supply and nutrient supply. The mechanistic simulation of tomato crop growth and development is described in this paper. The main processes determining yield, growth, development and water and nutrient uptake of a tomato crop are discussed in relation to growth conditions and crop management. Organ initiation is simulated as a function of temperature. Simulation of leaf area expansion is also based on temperature, unless a maximum specific leaf area is reached. Leaf area is an important determinant for the light interception of the canopy. Radiation shows exponential extinction with depth in the canopy. For leaf photosynthesis several models are available. Transpiration is calculated according to the Penman-Monteith approach. Net assimilate production is calculated as the difference between canopy gross photosynthesis and maintenance respiration. The net assimilate production is used for growth of the different plant organs and growth respiration. Partitioning of assimilates among plant organs is simulated based on the relative sink strengths of the organs. The simulation of plant-nutrient relationships starts with the calculation of the demanded concentrations of different macronutrients for each plant organ with the demand depending on the ontogenetic stage of the organ. Subsequently, the demanded nutrient uptake is calculated from these demanded concentrations and dry weight of the organs. When there is no limitation in the availability at the root surface, the actual uptake will equal the demanded uptake. When the root system cannot fulfil the demand, uptake is less, plant nutrient concentration drops and crop production might be reduced. It is concluded that mechanistic crop models accurately simulate yield, growth, development and water and nutrient relations of greenhouse grown tomato in different climate zone
Riemannian geometry of irrotational vortex acoustics
We consider acoustic propagation in an irrotational vortex, using the
technical machinery of differential geometry to investigate the ``acoustic
geometry'' that is probed by the sound waves. The acoustic space-time curvature
of a constant circulation hydrodynamical vortex leads to deflection of phonons
at appreciable distances from the vortex core. The scattering angle for phonon
rays is shown to be quadratic in the small quantity , where
is the vortex circulation, the speed of sound, and the impact
parameter.Comment: 4 pages, 2 figures, RevTex4. Discussion of focal length added; to
appear in Physical Review Letter
Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe
We report a high-pressure single crystal study of the superconducting
ferromagnet UCoGe. Ac-susceptibility and resistivity measurements under
pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes
at a critical pressure GPa. Near the ferromagnetic critical point
superconductivity is enhanced. Upper-critical field measurements under pressure
show attains remarkably large values, which provides solid evidence
for spin-triplet superconductivity over the whole pressure range. The obtained
phase diagram reveals superconductivity is closely connected to a
ferromagnetic quantum critical point hidden under the superconducting `dome'.Comment: 4 pages, 3 figures; accepted for publication in PR
Associations between religiosity and sexuality in a representative sample of Australian adults
Many studies have examined the influence on sexual attitudes and behavior of religious belief (i.e., religious denomination) or religiosity (e.g., attendance at services, subjective importance of religion). However, few studies have examined the combined effects of religion and religiosity on sexual attitudes and behavior. This study examined such effects in a representative sample of 19,307 Australians aged 16–59 years (response rate, 73.1%). The study compared members of four religious groups (Protestant, Catholic, Buddhist, Muslim) and two levels of frequency of attendance at religious service (less than monthly, at least monthly). Religious participants were compared to their non-religious peers in analyses adjusted for potential confounding by demographic variables. The outcomes were five sexual behaviors and five corresponding measures of sexual attitudes. The study revealed inconsistent patterns of association between religion/religiosity and a range of sexual behaviors and attitudes. In general, greater attendance at religious services was associated with more conservative patterns of behavior and attitudes. However, religious people who attended services infrequently were more similar to their non-religious peers than their more religious peers. The results of this study highlight the importance of considering not only religion or religiosity, but the intersection between these two variables
Theorems on gravitational time delay and related issues
Two theorems related to gravitational time delay are proven. Both theorems
apply to spacetimes satisfying the null energy condition and the null generic
condition. The first theorem states that if the spacetime is null geodesically
complete, then given any compact set , there exists another compact set
such that for any , if there exists a ``fastest null
geodesic'', , between and , then cannot enter . As
an application of this theorem, we show that if, in addition, the spacetime is
globally hyperbolic with a compact Cauchy surface, then any observer at
sufficiently late times cannot have a particle horizon. The second theorem
states that if a timelike conformal boundary can be attached to the spacetime
such that the spacetime with boundary satisfies strong causality as well as a
compactness condition, then any ``fastest null geodesic'' connecting two points
on the boundary must lie entirely within the boundary. It follows from this
theorem that generic perturbations of anti-de Sitter spacetime always produce a
time delay relative to anti-de Sitter spacetime itself.Comment: 15 pages, 1 figure. Example of gauge perturbation changed/corrected.
Two footnotes added and one footnote remove
Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds
We refine and extend a programme initiated by one of the current authors
[Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the
classical energy conditions of general relativity in a cosmological setting to
place very general bounds on various cosmological parameters. We show how the
energy conditions can be used to bound the Hubble parameter H(z), Omega
parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as
(relatively) simple functions of the redshift z, present-epoch Hubble parameter
H_0, and present-epoch Omega parameter Omega_0. We compare these results with
related observations in the literature, and confront the bounds with the recent
supernova data.Comment: 21 pages, 2 figure
The Hubble series: Convergence properties and redshift variables
In cosmography, cosmokinetics, and cosmology it is quite common to encounter
physical quantities expanded as a Taylor series in the cosmological redshift z.
Perhaps the most well-known exemplar of this phenomenon is the Hubble relation
between distance and redshift. However, we now have considerable high-z data
available, for instance we have supernova data at least back to redshift
z=1.75. This opens up the theoretical question as to whether or not the Hubble
series (or more generally any series expansion based on the z-redshift)
actually converges for large redshift? Based on a combination of mathematical
and physical reasoning, we argue that the radius of convergence of any series
expansion in z is less than or equal to 1, and that z-based expansions must
break down for z>1, corresponding to a universe less than half its current
size.
Furthermore, we shall argue on theoretical grounds for the utility of an
improved parameterization y=z/(1+z). In terms of the y-redshift we again argue
that the radius of convergence of any series expansion in y is less than or
equal to 1, so that y-based expansions are likely to be good all the way back
to the big bang y=1, but that y-based expansions must break down for y<-1, now
corresponding to a universe more than twice its current size.Comment: 15 pages, 2 figures, accepted for publication in Classical and
Quantum Gravit
Wormholes and Child Universes
Evidence to the case that classical gravitation provides the clue to make
sense out of quantum gravity is presented. The key observation is the existence
in classical gravitation of child universe solutions or "almost" solutions,
"almost" because of some singularity problems. The difficulties of these child
universe solutions due to their generic singularity problems will be very
likely be cured by quantum effects, just like for example "almost" instanton
solutions are made relevant in gauge theories with breaking of conformal
invariance. Some well motivated modifcations of General Relativity where these
singularity problems are absent even at the classical level are discussed. High
energy density excitations, responsible for UV divergences in quantum field
theories, including quantum gravity, are likely to be the source of child
universes which carry them out of the original space time. This decoupling
could prevent these high UV excitations from having any influence on physical
amplitudes. Child universe production could therefore be responsible for UV
regularization in quantum field theories which take into account
semiclassically gravitational effects. Child universe production in the last
stages of black hole evaporation, the prediction of absence of tranplanckian
primordial perturbations, connection to the minimum length hypothesis and in
particular the connection to the maximal curvature hypothesis are discussed.
Some discussion of superexcited states in the case these states are Kaluza
Klein excitations is carried out. Finally, the posibility of obtaining "string
like" effects from the wormholes associated with the child universes is
discussed.Comment: Talk presented at the IWARA 2009 Conference, Maresias, Brazil,
October 2009, accepted for publication in the proceedings, World Scientific
format, 8 page
- …