9,466 research outputs found

    Research study of droplet sizing technology leading to the development of an advanced droplet sizing system

    Get PDF
    An instrument to measure the size and velocity of droplets was developed. The instrument uses one of two techniques, as appropriate. In the first technique two small laser beams of one color identify the center of a larger laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual droplets can be related to their size. The first technique uses the visibility of a Doppler burst and validates it against the peak intensity of the signal's pedestal. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions of a given spray obtained using three different size ranges show excellent self-consistency in the overlapping region. Measurements of sprays of known characteristics exhibit errors in the order of 10%. The principles of operation and design criteria of the instrument are discussed in great detail

    Preparation of an Exciton Condensate of Photons on a 53-Qubit Quantum Computer

    Full text link
    Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes. While elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our result with a photon condensate has the potential to further the exploration of this new form of condensate that may play a significant role in realizing efficient room-temperature energy transport

    Empirical model for the Earth's cosmic ray shadow at 400 KM: Prohibited cosmic ray access

    Get PDF
    The possibility to construct a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft

    Estimating the change in asymptotic direction due to secular changes in the geomagnetic field

    Get PDF
    The concept of geomagnetic optics, as described by the asymptotic directions of approach, is extremely useful in the analysis of cosmic radiation data. However, when changes in cutoff occur as a result of evolution in the geomagnetic field, there are corresponding changes in the asymptotic cones of acceptance. A method is introduced of estimating the change in the asymptotic direction of approach for vertically incident cosmic ray particles from a reference set of directions at a specific epoch by considering the change in the geomagnetic cutoff

    Relation of Root and Shoot Morphology of Grass Seedlings

    Get PDF
    Grass seedling establishment is dependent on adventitious root development. However, evaluating the establishment status of a seeding by excavating a population of seedlings and determining root morphology is difficult and generally will not be undertaken. Based on both field and greenhouse studies we have found that root and shoot morphological development is closely related within species, for intermediate wheatgrass, [Thinopyrum intermedium (Host) Barkw. and D.R. Dewey], smooth bromegrass (Bromus inermis Leyss.), switchgrass (Panicum virgatum L.), and big bluestem (Andropogon gerardii Vitman) seedling populations. Easily observable developmental stages of seedling shoots were related to adventitious root development. When the average stage of the population of shoots of these grasses reaches three to four collared leaves for intermediate wheatgrass and smooth bromegrass, first secondary tiller for switchgrass and the four to six collared leaf stage for big bluestem, there was an average of two to three adventitious roots which indicates the onset of seedling establishment
    corecore