7,274 research outputs found

    High coercivity induced by mechanical milling in cobalt ferrite powders

    Get PDF
    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500oC. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To investigate the influence of the microstructure on the magnetic behavior of these samples, we used X-ray powder diffraction (XPD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by the Williamson-Hall plot was used to estimate the average crystallite size and strain induced by mechanical milling in the samples

    Levi-Civita spacetimes in multidimensional theories

    Full text link
    We obtain the most general static cylindrically symmetric vacuum solutions of the Einstein field equations in (4+N)(4 + N) dimensions. Under the assumption of separation of variables, we construct a family of Levi-Civita-Kasner vacuum solutions in (4+N)(4 + N). We discuss the dimensional reduction of the static solutions. Depending on the reduction procedure, they can be interpreted either as a scalar-vacuum generalization of Levi-Civita spacetimes, or as the effective 4D vacuum spacetime outside of an idealized string in braneworld theory.Comment: 7 pages. Accepted for publication in Mod. Phys. Lett. A (MPLA

    Concentration of atomic hydrogen diffused into silicon in the temperature range 900–1300 °C

    Get PDF
    Boron-doped Czochralski silicon samples with [B]~1017 cm−3 have been heated at various temperatures in the range 800–1300 °C in an atmosphere of hydrogen and then quenched. The concentration of [H-B] pairs was measured by infrared localized vibrational mode spectroscopy. It was concluded that the solubility of atomic hydrogen is greater than [Hs] = 5.6 × 1018 exp( − 0.95 eV/kT)cm−3 at the temperatures investigated

    Brane world solutions of perfect fluid in the background of a bulk containing dust or cosmological constant

    Full text link
    The paper presents some solutions to the five dimensional Einstein equations due to a perfect fluid on the brane with pure dust filling the entire bulk in one case and a cosmological constant (or vacuum) in the bulk for the second case. In the first case, there is a linear relationship between isotropic pressure, energy density and the brane tension, while in the second case, the perfect fluid is assumed to be in the form of chaplygin gas. Cosmological solutions are found both for brane and bulk scenarios and some interesting features are obtained for the chaplygin gas on the brane which are distinctly different from the standard cosmology in four dimensions.Comment: 10 Latex pages, 5 figure

    Exterior spacetime for stellar models in 5-dimensional Kaluza-Klein gravity

    Get PDF
    It is well-known that Birkhoff's theorem is no longer valid in theories with more than four dimensions. Thus, in these theories the effective 4-dimensional picture allows the existence of different possible, non-Schwarzschild, scenarios for the description of the spacetime outside of a spherical star, contrary to general relativity in 4D. We investigate the exterior spacetime of a spherically symmetric star in the context of Kaluza-Klein gravity. We take a well-known family of static spherically symmetric solutions of the Einstein equations in an empty five-dimensional universe, and analyze possible stellar exteriors that are conformal to the metric induced on four-dimensional hypersurfaces orthogonal to the extra dimension. All these exteriors are continuously matched with the interior of the star. Then, without making any assumptions about the interior solution, we prove the following statement: the condition that in the weak-field limit we recover the usual Newtonian physics singles out an unique exterior. This exterior is "similar" to Scharzschild vacuum in the sense that it has no effect on gravitational interactions. However, it is more realistic because instead of being absolutely empty, it is consistent with the existence of quantum zero-point fields. We also examine the question of how would the deviation from the Schwarzschild vacuum exterior affect the parameters of a neutron star. In the context of a model star of uniform density, we show that the general relativity upper limit M/R < 4/9 is significantly increased as we go away from the Schwarzschild vacuum exterior. We find that, in principle, the compactness limit of a star can be larger than 1/2, without being a black hole. The generality of our approach is also discussed.Comment: Typos corrected. Accepted for publication in Classical and Quantum Gravit

    Late time cosmic acceleration from vacuum Brans-Dicke theory in 5D

    Full text link
    We show that the scalar-vacuum Brans-Dicke equations in 5D are equivalent to Brans-Dicke theory in 4D with a self interacting potential and an effective matter field. The cosmological implication, in the context of FRW models, is that the observed accelerated expansion of the universe comes naturally from the condition that the scalar field is not a ghost, i.e., ω>−3/2\omega > - 3/2. We find an effective matter-dominated 4D universe which shows accelerated expansion if −3/2<ω<−1- 3/2 < \omega < - 1. We study the question of whether accelerated expansion can be made compatible with large values of ω\omega, within the framework of a 5D scalar-vacuum Brans-Dicke theory with variable, instead of constant, parameter ω\omega. In this framework, and based on a general class of solutions of the field equations, we demonstrate that accelerated expansion is incompatible with large values of ω\omega.Comment: In V2 the summary section is expanded. To be published in Classical and Quantum Gravity
    • …
    corecore