3,789 research outputs found

    Atom-molecule coherence in a one-dimensional system

    Full text link
    We study a model of one-dimensional fermionic atoms that can bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein Condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point, we provide closed form expressions for the density-density response functions.Comment: 5 pages, no figures, Revtex 4; (v2) added a reference to cond-mat/0505681 where related results are reported; (v3) Expression of correlation functions given in terms of generalized hypergeometric function

    Ensuring high standards of British Society for Rheumatology clinical guidelines: reflections from the coalface

    Get PDF
    Clinical guideline development by the Standards Audit Guidelines Working Group (SAGWG) is one of the most valued activities of the British Society for Rheumatology (BSR). In this article, based on a webinar [1], we reflect on our experiences of involvement in guidelines from working group membership to leadership of SAGWG to explain the process and highlight reasons why anyone can and should get involved. This editorial represents the opinion of the authors and not necessarily those of the National Health Service, National Institute for Health Research or Department of Healt

    Superposition of macroscopic numbers of atoms and molecules

    Full text link
    We theoretically examine photoassociation of a non-ideal Bose-Einstein condensate, focusing on evidence for a macroscopic superposition of atoms and molecules. This problem raises an interest because, rather than two states of a given object, an atom-molecule system is a seemingly impossible macroscopic superposition of different objects. Nevertheless, photoassociation enables coherent intraparticle conversion, and we thereby propose a viable scheme for creating a superposition of a macroscopic number of atoms with a macroscopic number of molecules.Comment: 4 pages, 2 figs, to appear in Phys. Rev. Let

    Landau-Zener Problem for Trilinear Hamiltonians

    Full text link
    We consider a nonlinear version of the Landau-Zener problem, focusing on photoassociation of a Bose-Einstein condensate as a specific example. Contrary to the exponential rate dependence obtained for the linear problem, a series expansion technique indicates that, when the resonance is crossed slowly, the probability for failure of adiabaticity is directly proportional to the rate at which the resonance is crossed.Comment: 4.5 pages, 1 figure, transferred to PRA; v2 adds discussion, clarification, and explicit numbers for Na and 87R

    The design of a cathode to operate in an oxygen-rich environment

    Full text link
    The primary problem with Hall plasma accelerator operation on oxygen is poor cathode performance and short lifetime. The primary problem with micro Hall thrusters is the absence of a stable low power cathode. Cathodes traditionally used for both applications employ thermionic emitters which are not efficient and which are easily oxidized in an oxygen-rich environment. The field emitter cathode presented in this report has the potential of filling both vacancies since it does not require a high-power heater and can be scaled down with the size of the thruster. The advantages to using Hf and HfC as emitting materials are low work functions and high resistance to oxygen poisoning. Preliminary investigations proved that HfC emitters can operate in 7.6 mTorr oxygen pressure environments. The initial cathode design employs an electrostatic lens that also acts as an ion filter to prevent thruster ions from bombarding the field emitters while decelerating the electron beam and keeping it focused to ensure efficient performance. Electron trajectories through the cathode and ion filtering capabilities are presented in this report as predicted by the charged particle code, MAGIC. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87392/2/305_1.pd

    Curvature energy effects on strange quark matter nucleation at finite density

    Full text link
    We consider the effects of the curvature energy term on thermal strange quark matter nucleation in dense neutron matter. Lower bounds on the temperature at which this process can take place are given and compared to those without the curvature term.Comment: PlainTex, 6 pp., IAG-USP Rep.5
    corecore