589 research outputs found
Symmetric Autocompensating Quantum Key Distribution
We present quantum key distribution schemes which are autocompensating
(require no alignment) and symmetric (Alice and Bob receive photons from a
central source) for both polarization and time-bin qubits. The primary benefit
of the symmetric configuration is that both Alice and Bob may have passive
setups (neither Alice nor Bob is required to make active changes for each run
of the protocol). We show that both the polarization and the time-bin schemes
may be implemented with existing technology. The new schemes are related to
previously described schemes by the concept of advanced waves.Comment: 4 pages, 2 figur
Nonorthogonal Quantum States Maximize Classical Information Capacity
I demonstrate that, rather unexpectedly, there exist noisy quantum channels
for which the optimal classical information transmission rate is achieved only
by signaling alphabets consisting of nonorthogonal quantum states.Comment: 5 pages, REVTeX, mild extension of results, much improved
presentation, to appear in Physical Review Letter
Magnetospheric convection from Cluster EDI measurements compared with the ground-based ionospheric convection model IZMEM
Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for more than seven and a half years (2001–2008) have been used to derive a statistical model of the high-latitude electric potential distribution for summer conditions. Based on potential pattern for different orientations of the interplanetary magnetic field (IMF) in the GSM y-z-plane, basic convection pattern (BCP) were derived, that represent the main characteristics of the electric potential distribution in dependence on the IMF. The BCPs comprise the IMF-independent potential distribution as well as patterns, which describe the dependence on positive and negative IMF<I>B<sub>z</sub></I> and IMF<I>B<sub>y</sub></I> variations. The full set of BCPs allows to describe the spatial and temporal variation of the high-latitude electric potential (ionospheric convection) for any solar wind IMF condition near the Earth's magnetopause within reasonable ranges. The comparison of the Cluster/EDI model with the IZMEM ionospheric convection model, which was derived from ground-based magnetometer observations, shows a good agreement of the basic patterns and its variation with the IMF. According to the statistical models, there is a two-cell antisunward convection within the polar cap for northward IMF<I>B<sub>z</sub></I>+&le;2 nT, while for increasing northward IMF<I>B<sub>z</sub></I>+ there appears a region of sunward convection within the high-latitude daytime sector, which assumes the form of two additional cells with sunward convection between them for IMF<I>B<sub>z</sub></I>+&asymp;4–5 nT. This results in a four-cell convection pattern of the high-latitude convection. In dependence of the &plusmn;IMF<I>B<sub>y</sub></I> contribution during sufficiently strong northward IMF<I>B<sub>z</sub></I> conditions, a transformation to three-cell convection patterns takes place
On 1-qubit channels
The entropy H_T(rho) of a state rho with respect to a channel T and the
Holevo capacity of the channel require the solution of difficult variational
problems. For a class of 1-qubit channels, which contains all the extremal
ones, the problem can be significantly simplified by associating an Hermitian
antilinear operator theta to every channel of the considered class. The
concurrence of the channel can be expressed by theta and turns out to be a flat
roof. This allows to write down an explicit expression for H_T. Its maximum
would give the Holevo (1-shot) capacity.Comment: 12 pages, several printing or latex errors correcte
Practical quantum key distribution: On the security evaluation with inefficient single-photon detectors
Quantum Key Distribution with the BB84 protocol has been shown to be
unconditionally secure even using weak coherent pulses instead of single-photon
signals. The distances that can be covered by these methods are limited due to
the loss in the quantum channel (e.g. loss in the optical fiber) and in the
single-photon counters of the receivers. One can argue that the loss in the
detectors cannot be changed by an eavesdropper in order to increase the covered
distance. Here we show that the security analysis of this scenario is not as
easy as is commonly assumed, since already two-photon processes allow
eavesdropping strategies that outperform the known photon-number splitting
attack. For this reason there is, so far, no satisfactory security analysis
available in the framework of individual attacks.Comment: 11 pages, 6 figures; Abstract and introduction extended, Appendix
added, references update
Experimental Demonstration of Post-Selection based Continuous Variable Quantum Key Distribution in the Presence of Gaussian Noise
In realistic continuous variable quantum key distribution protocols, an
eavesdropper may exploit the additional Gaussian noise generated during
transmission to mask her presence. We present a theoretical framework for a
post-selection based protocol which explicitly takes into account excess
Gaussian noise. We derive a quantitative expression of the secret key rates
based on the Levitin and Holevo bounds. We experimentally demonstrate that the
post-selection based scheme is still secure against both individual and
collective Gaussian attacks in the presence of this excess noise.Comment: 4 pages, 4 figure
The enhancement of phase separation aspect in electron doped manganite Ca0.8Sm0.16Nd0.04MnO3
The complex lanthanide doping of electron manganites results in enhancement
of various phase separation effects in physical properties of these compounds.
Selecting Ca0.8Sm0.16Nd0.04MnO3 as a model case we show that the first order
structural phase transition from paramagnetic semi-metallic phase into
anti-ferromagnetic semi-metallic phase at TS ~ 158 +- 4 K is marked by an
abrupt decrease in magnetization, a step like anomaly DL/L = 10-4 in thermal
expansion and large latent heat DQ = 610 J/mol. In a certain temperature range
below TS, the high field magnetization exhibits hysteretic metamagnetic
behavior due to field-induced first order transformation. ac-susceptibility,
magnetization and resistivity data suggest rather a non-uniform state in
Ca0.8Sm0.16Nd0.04MnO3 at low temperatures. The metal - insulator transition
occurs at TMI ~112 +- 3 K, accompanied by a step-like increase in
magnetization. These features could be ascribed to "sponging" of electrons from
neighboring anti-ferromagnetic matrix by clusters undergoing the ferromagnetic
ordering.Comment: submitted to J.Phys. Cond. Matte
No-Switching Quantum Key Distribution using Broadband Modulated Coherent Light
We realize an end-to-end no-switching quantum key distribution protocol using
continuous-wave coherent light. We encode weak broadband Gaussian modulations
onto the amplitude and phase quadratures of light beams at the Shannon's
information limit. Our no-switching protocol achieves high secret key rate via
a post-selection protocol that utilizes both quadrature information
simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless
channel and 1 kbit/s, per 17 MHz of detected bandwidth, for 90% channel loss.
Since our scheme is truly broadband, it can potentially deliver orders of
magnitude higher key rates by extending the encoding bandwidth with higher-end
telecommunication technology.Comment: 5 pages, 3 figures, publishe
Magnetization and specific heat of TbFe3(BO3)4: Experiment and crystal field calculations
We have studied the thermodynamic properties of single-crystalline
TbFe3(BO3)4. Magnetization measurements have been carried out as a function of
magnetic field (up to 50 T) and temperature up to 350K with the magnetic field
both parallel and perpendicular to the trigonal c-axis of the crystal. The
specific heat has been measured in the temperature range 2-300K with a magnetic
field up to 9 T applied parallel to the c-axis. The data indicate a structural
phase transition at 192 K and antiferromagnetic spin ordering at 40 K. A
Schottky anomaly is present in the specific heat data around 20 K, arising due
to two low-lying energy levels of the Tb3+ ions being split by f-d coupling.
Below TN magnetic fields parallel to the c-axis drive a spin-flop phase
transition, which is associated with a large magnetization jump. The highly
anisotropic character of the magnetic susceptibility is ascribed mainly to the
Ising-like behavior of the Tb3+ ions in the trigonal crystal field. We describe
our results in the framework of an unified approach which is based on
mean-field approximation and crystal-field calculations.Comment: 10 pages, 10 figures, 20 references, accepted by Phys. Rev.
- …