16 research outputs found

    Application of the Fokker-Planck molecular mixing model to turbulent scalar mixing using moment methods

    Get PDF
    An extended quadrature method of moments using the beta kernel density function (beta-EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope [ Direct numerical simulations of the turbulent mixing of a passive scalar, Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope [ Mapping closures for turbulent mixing and reaction, Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope [ A DNS study of turbulent mixing of two passive scalars, Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed beta-PDF model [S. S. Girimaji, Assumed beta-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing, Combust. Sci. Technol. 78, 177 (1991)], the beta-EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost

    Experimental Investigation of Flow and Coherent Properties of Excited Non-Circular Liquid Jets

    Get PDF
    Non-circular jet is identified as an efficient passive flow-control technique that attracts many research topics. The existence of twine-vortexes is the main reason for dissimilarity between circular and non-circular jets. Which also influences the production of droplets and satellites as well as the jet instability. This investigation presents instability analysis of liquid-gas interface as an applicable conception in free-jet flows. We experiment different jet geometries within a gas ambient in order to study their hydrodynamic behavior. These studies give an appropriate perception about contributing forces that play essential roles in fluid instability. We focus on varying viscosity and surface tension as our excitation techniques. These methods are vital to examine the key properties of non-circular jets such as breakup and decay length, axis-switching wavelength as well as produced droplets and satellites characteristics. First, instabilities of charged liquid jets are investigated by considering the interaction between electric and inertial forces. Also, the viscosity effect was studied for its interaction with the inertial and surface tension forces. In each case, liquid jet in-stability for various nozzle geometries over a specific range of jet velocity is examined. The obtained results illustrate that the geometry of nozzle has an important effect on jet instability. In addition, by increment of We number, the breakup and decay length as well as the axis-switching wavelength are raising. However, by the rise of twin-vortex number, the breakup length increases but the decay length and axis-switching wavelength decrease

    Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance

    Get PDF
    Silicon-based impurities are ubiquitous in natural graphite. However, their role as a contaminant in exfoliated graphene and their influence on devices have been overlooked. Herein atomic resolution microscopy is used to highlight the existence of silicon-based contamination on various solution-processed graphene. We found these impurities are extremely persistent and thus utilising high purity graphite as a precursor is the only route to produce silicon-free graphene. These impurities are found to hamper the effective utilisation of graphene in whereby surface area is of paramount importance. When non-contaminated graphene is used to fabricate supercapacitor microelectrodes, a capacitance value closest to the predicted theoretical capacitance for graphene is obtained. We also demonstrate a versatile humidity sensor made from pure graphene oxide which achieves the highest sensitivity and the lowest limit of detection ever reported. Our findings constitute a vital milestone to achieve commercially viable and high performance graphene-based devices

    Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response

    No full text
    Preparation of highly photo-activated TiO2 is achievable by hydrogenation at constant temperature and pressure, with controlled hydrogenation duration. The formation of surface disorders and Ti3+ is responsible for the color change from white unhydrogenated TiO2 to bluish-gray hydrogenated TiO2. This color change, together with increased oxygen vacancies and Ti3+ enhanced the solar light absorption from UV to infra-red region. Interestingly, no band gap narrowing is observed. The photocatalytic activity in the UV and visible region is controlled by Ti3+ and oxygen vacancies respectively. Both Ti3+ and oxygen vacancies increases the electron density on the catalyst surface thus facilitates •OH radicals formation. The lifespan of surface photo-excited electrons and holes are also sustained thus prevents charge carrier recombination. However, excessive amount of oxygen vacancies deteriorates the photocatalytic activity as it serves as charge traps. Hydrogenation of TiO2 also promotes the growth of active {0 0 1} facets and facilitates the photocatalytic activity by higher concentration of surface OH radicals. However, the growth of {0 0 1} facets is small and insignificant toward the overall photo-kinetics. This work also shows that larger role is played by Ti3+ and oxygen vacancies rather than the surface disorders created during the hydrogenation process. It also demonstrates the ability of hydrogenated TiO2 to absorb wider range of photons even though at a similar band gap as unhydrogenated TiO2. In addition, the photocatalytic activity is shown to be decreased for extended hydrogenation duration due to excessive catalyst growth and loss in the total surface area. Thus, a balance in the physico-chemical properties of hydrogenated TiO2 is crucial to enhance the photocatalytic activity by simply controlling the hydrogenation duration

    Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO2 prepared by modified sol-gel method

    No full text
    Highly photoactive mesoporous F-doped TiO2 with improved physico-chemical characteristics is achieved using modified sol-gel method. The usage of trifluoroacetic as fluorine precursor significantly modifies the morphology, size, pore shape, crystal phase, crystal structure, surface chemical state and to a lesser extent, {1 0 1} and {0 0 1} facets. The accessibility of fluoride ions on Tisingle bondOsingle bondTi polymer chains during crystal growth during the sol-gel process remarkably influences the properties of catalyst. To the best of our knowledge, preparation of F-doped TiO2 using modified sol-gel and trifluoroacetic acid are limited, and still not enough. Thus this work provides additional insight by using an approach which is less hazardous, less costly and practical for large scale agile development in the photocatalysis industry

    Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine

    No full text
    Introducing defects into the intrinsic TiO2 structural framework with nitrogen enhanced the photocatalytic response towards the degradation of atrazine, as compared to undoped TiO2. Both catalysts, which were prepared in an analogous manner, demonstrated high crystallinity and anatase phase dominant with well defined {101} facets, which serves as a pioneer platform for good photocatalytic activity. The introduction of nitrogen increased the stability of the crystal structure which leads to the formation of pure active anatase phase. Although the optical response was shifted towards the visible region, initiated by the formation of new absorption defects and interstate energy levels, the chemical state of nitrogen in the doped TiO2 controls the overall catalyst photoreactivity. In this study, it was found that the surface area and degree of band gap reduction played a lesser role for photocatalysis enhancement, although they partly contributed, than the concentration of surface charge traps and the type of structural framework formed during nitrogen incorporation. The enhancement in the photocatalytic degradation of atrazine clearly was influenced by the loading and nature of the nitrogen dopant, which in turn, governed the types of chemical and optical properties of the final catalyst product

    Multi-directional electrodeposited gold nanospikes for antibacterial surface applications

    No full text
    The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies

    Zinc Titanate Nanoarrays with Superior Optoelectrochemical Properties for Chemical Sensing

    No full text
    In this report, the gas sensing performance of zinc titanate (ZnTiO3) nanoarrays (NAs) synthesized by coating hydrothermally formed zinc oxide (ZnO) NAs with TiO2 using low-temperature chemical vapor deposition is presented. By controlling the annealing temperature, diffusion of ZnO into TiO2 forms a mixed oxide of ZnTiO3 NAs. The uniformity and the electrical properties of ZnTiO3 NAs made them ideal for light-activated acetone gas sensing applications for which such materials are not well studied. The acetone sensing performance of the ZnTiO3 NAs is tested by biasing the sensor with voltages from 0.1 to 9 V dc in an amperometric mode. An increase in the applied bias was found to increase the sensitivity of the device toward acetone under photoinduced and nonphotoinduced (dark) conditions. When illuminated with 365 nm UV light, the sensitivity was observed to increase by 3.4 times toward 12.5 ppm acetone at 350 °C with an applied bias of 9 V, as compared to dark conditions. The sensor was also observed to have significantly reduced the adsorption time, desorption time, and limit of detection (LoD) when excited by the light source. For example, LoD of the sensor in the dark and under UV light at 350 °C with a 9 V bias is found to be 80 and 10 ppb, respectively. The described approach also enabled acetone sensing at an operating temperature down to 45 °C with a repeatability of >99% and a LoD of 90 ppb when operated under light, thus indicating that the ZnTiO3 NAs are a promising material for low concentration acetone gas sensing applications
    corecore