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ARTICLE

Silicon as a ubiquitous contaminant in graphene
derivatives with significant impact on device
performance
Rouhollah Jalili 1, Dorna Esrafilzadeh2, Seyed Hamed Aboutalebi 3,4,5, Ylias M. Sabri6, Ahmad E. Kandjani6,

Suresh K. Bhargava6, Enrico Della Gaspera 1, Thomas R. Gengenbach7, Ashley Walker 8, Yunfeng Chao8,

Caiyun Wang8, Hossein Alimadadi9,10, David R.G. Mitchell11, David L. Officer 8, Douglas R. MacFarlane12 &

Gordon G. Wallace8

Silicon-based impurities are ubiquitous in natural graphite. However, their role as a con-

taminant in exfoliated graphene and their influence on devices have been overlooked. Herein

atomic resolution microscopy is used to highlight the existence of silicon-based con-

tamination on various solution-processed graphene. We found these impurities are extremely

persistent and thus utilising high purity graphite as a precursor is the only route to produce

silicon-free graphene. These impurities are found to hamper the effective utilisation of gra-

phene in whereby surface area is of paramount importance. When non-contaminated gra-

phene is used to fabricate supercapacitor microelectrodes, a capacitance value closest to the

predicted theoretical capacitance for graphene is obtained. We also demonstrate a versatile

humidity sensor made from pure graphene oxide which achieves the highest sensitivity and

the lowest limit of detection ever reported. Our findings constitute a vital milestone to

achieve commercially viable and high performance graphene-based devices.
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Large-scale, cost-effective methods for producing high-quality
and functional atomically thin two-dimensional (2D)
materials with unmatched properties are critical to realising

commercial applications of these promising materials1–5. How-
ever, the current top–down synthesis methods are prone to
contamination, which can adversely affect properties, such
as optical absorption and emission, electrochemical
properties, carrier mobility, biological activity and toxicological
properties6–13. These contaminants can cause inferior or unpre-
dictable properties and are at the heart of many seemingly
inconsistent reports on the properties of 2D materials8,14,15. For
instance, several contradictory reports on electrochemical prop-
erties, electrocatalytic activity and biological properties of gra-
phene and graphene oxide (GO) were ultimately understood to be
the result of metallic impurities or acidic residues7,8,16–20. Such
inconsistency prevents the development of a robust regulatory
framework governing the implementation of such layered nano-
materials, especially if they are destined to become the backbone
of next-generation devices. Perhaps, more importantly, this has
stymied the emergence of a major application or the so-called
“killer app” for graphene-based systems21, a long-promised but
as-yet unrealised goal. Graphene may therefore follow the same
trajectory of carbon nanotubes14,21, which were once billed as
being transformative but have so far failed to make a significant
commercial impact.

The need for methods that can produce higher quality and
purity graphene and other 2D-based materials is widely recog-
nised for device fabrication. Despite this, there seems to have
been little effort devoted to understanding what effect impurities
are having on the performance. The graphene glut in recent years
has resulted in an increase in the use of cheaper alternative
feedstocks21. However, to date, no rigorous quality-control
mechanism has been put in place to understand the detrimental
effects of impurities on the final performance of devices, mainly
due to the lack of knowledge of the types of impurities and their
potential influence. As graphene is a 2D material system, which is
basically only a surface, any contaminant can alter its intrinsic
properties dramatically by affecting surface active sites6,14 and/or
by reducing the available surface area, as shown schematically in
Fig. 1. This can result in decreased performance in active surface
area-dependent applications. Moreover, this also indicates the
possibility that the as-exfoliated graphene layers can each have
different properties, again highlighting the importance of pure 2D
materials. For instance, the adulteration of carbon bonds in real-
world, two-electrode supercapacitors severely affects the double-
layer capacitance22. This leads to capacitance values much lower
than the theoretical capacitance of graphene (550 F/g)23, with

values of 409 F/g being the highest reported to date24. As the
production capacity of graphene and other 2D materials grows
exponentially, the demand for high-performance 2D material-
based devices will become significant2,21. This calls for a broad
effort to identify the types and extent of impurities present and
the best way to deal with them to achieve the maximum potential
of the broad family of 2D materials.

Here direct visualisation of the surface of various solution-
processed graphene reveals the existence of significant amount of
silicon-based contaminations at the atomic level. High-angle
annular dark field (HAADF) imaging combined with energy-
dispersive X-ray spectroscopy (EDS) in an aberration-corrected
scanning transmission electron microscope (STEM) was
employed to detect and image these impurities. The present study
addresses the challenge of obtaining high-purity graphene and
GO from graphite (top–down approach) and offers a broad and
comprehensive perspective on how to dramatically enhance the
final performance of such materials in diverse applications. We
identify the most prominent factor impacting the performance of
graphene-based devices, namely inherent contaminants arising
from impure graphite feedstock. Ultra-high performance
humidity sensors and supercapacitors from graphene materials
were then achieved through eliminating the adverse impact of
endogenous silicon impurities.

Result
Atomic resolution observation of silicon impurity on gra-
phene. The presence of molecularly dispersed silicon-based
contamination was not evident through high-resolution TEM
bright-field (BF) analysis of GO samples (Fig. 2). Monodisperse,
amorphous materials are typically very difficult to resolve in
conventional phase-contrast high-resolution TEM/STEM ima-
ging particularly in the presence of contaminants25. However, the
situation changes dramatically when using HAADF imaging. The
atomic resolution capabilities of aberration-corrected STEM
permits single-atom imaging in HAADF mode by virtue of its
high atomic number sensitivity (the contrast is roughly propor-
tional to Z2, where Z is the mean atomic number)26. Therefore,
the higher atomic number of silicon with respect to carbon and
oxygen ensures that Si (and other high atomic number element)
atoms are visible as bright spots in HAADF micrographs, while
this was not possible with conventional BF images. Figure 2
shows silicon-based contamination as molecules and clusters
thereof cover a large fraction of the surface area of GO, which
produced from graphite of low purity (i.e. 98%). The existence of
these impurities is also further verified by performing EDS in

a b

Fig. 1 Schematic representation of the available surface area of graphene for molecular interaction. a Pure surface vs b contaminated surface. The red
spheres represent molecules that can interact with the surface, while the orange rafts represent the contaminants
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Fig. 2 The extent of silicon-based contamination on the surface of typical graphene oxide derived from low-purity graphite (98% purity). a Bright-field (BF)
image of a typical GO sheet. b HAADF image of a. c, d Details of BF and HAADF images of the marked region in a at higher magnification, respectively.
Unlike the BF images in which Si contaminants are largely invisible, the HAADF images highlights them as bright clusters. e EDS spectrum of the entire
region shown as pink box in a, c. The strong Si peak at 1.739 keV confirms the significant contamination in the GO sample. f, g A comparison of the EDS
spectra of the contaminated area (f) and non-contaminated area (g), which are marked as red and green boxes in d, respectively

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07396-3 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5070 | DOI: 10.1038/s41467-018-07396-3 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


parallel with HAADF on the same region. The EDS spectrum of
GO sheet (Fig. 2e) identifies a significant amount of silicon-based
contamination. The peaks at ~0.277, 0.525 and 1.739 keV in the
EDS spectrum are due to C, O and Si, respectively, while the peak
at 0.930 keV is from the Cu (support) grid. Comparing the EDS
spectra of two neighbouring regions, one clean (dark) and the
other bright (contaminated) confirms silicon to be the con-
taminant (Fig. 2 f, g and Supplementary Figure 1). The con-
taminated region (red boxed region in Fig. 2d) showed a
noticeable peak at 1.739 keV (Fig. 2f), while the clean regions
(green box in Fig. 2d) showed no such silicon peak (Fig. 2g).

Oxidative exfoliation of graphite, i.e. modified Hummers’
method, was used here27,28 and requires several chemical
treatment steps any, or all of which, could contribute to the
observed silicon-based contamination. However, the impurity
was also present in solvent-exfoliated graphene layers prepared by
bath sonication of graphite powder in a very pure exfoliating
solvent (Fig. 3 and Supplementary Figure 2). Solvent exfoliation
of graphite uses a solvent (ca. N,N-dimethylformamide) for the

exfoliation process to give graphene in the liquid phase
(monolayer and few layers) without any additional oxidation
step29. This showed that silicon-based compounds are ubiquitous
contamination in graphene-based materials when using
top–down production approaches and is not caused solely by
reagents or particular chemical processes (i.e. modified Hum-
mers’ method used here27,28). Therefore, the silicon contamina-
tion originated from the graphite precursor.

HAADF imaging of the parent graphite (98% purity)
demonstrated a significant amount of silicon-based contamina-
tion (Fig. 4). Detailed images of the three different subareas
highlighted in this figure are shown in Fig. 3b–d. EDS shows
regions to be iron-contaminated, clean and silicon-
contaminated (Fig. 4e–g, respectively). Clean regions showed
a perfect graphitic lattice structure with very little or no silicon
presence, whereas other areas showed intractable and wide-
spread silicon-based contamination along with some iron
clusters. Natural graphite is mined and then purified using
floatation. The purification in this process is based on
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Fig. 3 The extent of silicon contamination on the surface of typical solvent-exfoliated graphene derived from low-purity graphite (98% purity). a HAADF
image of a typical graphene sheet. b Detail of HAADF image of the boxed region in a. c EDS spectrum of the boxed region in a. The strong Si peak at
1.739 keV confirms the presence of significant contamination. d, e A comparison of the EDS spectra of the contaminated area (d) and non-contaminated
and monolayer area (e), which are marked as red and green boxes in b, respectively
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differences between the surface chemistry of soil rock and
graphite mineral30. However, the floatation process is not able
to remove high abundance mineral impurities, such as silicon.
These impurities are commonly removed by using chemical or
thermal treatments31. Graphite particles in the purity range of

80–98% are typically refined using only floatation. For purities
>98%, additional refinement steps are carried out following
floatation32. This provides two options to eliminate the
contamination: (a) purification of the exfoliated materials and
(b) employing purer graphite precursors.
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Fig. 4 The extent of silicon contamination on the surface of typical low purity graphite (98% purity). a HAADF image of a typical graphite platelet. Details
of the various boxed regions in a showing: b an iron contamination, c a clean area with a perfect graphitic lattice structure, and d a silicon contaminated
area. e–g EDS spectra of b–d, respectively, showing iron contamination, clean graphene and silica contamination, respectively
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Producing high-purity graphene. As important as the removal
of this contamination on the surface of GO is, it proved to be an
almost impossible task (Fig. 5). Various methods were evaluated
including extensive washing of the as-prepared GO material with
boiling 5M NaOH (Fig. 5a, b). However, the silicon-based con-
taminants proved to be persistent and appeared to become
more widely dispersed across the surface. Purification with such a
strong basic solution resulted in an irreversible agglomeration
and restacking of GO sheets (Supplementary Figure 3). Conse-
quently, the impurities are confined between the layers and
remain following the purification process. Even
chemical–reduction of GO proved to be unsuccessful in removing
the impurities effectively (Fig. 5c). This, however, was not sur-
prising as silicon–oxygen-rich compounds (i.e. silica) are typically
considered to be corrosion-resistant materials and the only
reagent that can effectively etch them is fluoride. However, even
using NH4F to remove the impurities proved to be unsuccessful
(Fig. 5d and Supplementary Figure 3–4), and this also resulted in
an irreversible agglomeration of GO layers. Generally, increasing
the ionic strength or decreasing the pH of GO suspensions results
in loss of the surface charge and restacking of GO particles then
occurs33. Moreover, the set-up and the process parameters that
need to be optimised for the removal of silicon impurities are
complex and hazardous and result in a significant increase in the
cost of production34.

A better approach is therefore to improve the quality and
purity of the feedstock and to avoid the use of inexpensive and
contaminated feedstocks, which are now typically used in non-
research applications. Evaluation of various GO produced from
graphite with a range of purities (98% to 99.9999%) revealed that
purities of ≥99.9% result in almost contaminant-free GO
(Fig. 6a–e & Supplementary Figure 5). Interestingly, a commer-
cially obtained GO material, which was tested as a control,
showed very significant silicon-based contamination. Further-
more, EDS spectra of GO derived from graphite with a purity of
≥99.9% showed no detectable silicon-based contamination
(Fig. 6g–k). Nevertheless, the HAADF images still showed very
limited numbers of impurity atoms (bright dots) even in the very
high purity GO (Fig. 6d, e & Supplementary Figure 6). It has been
shown previously that oxidation of graphite introduces varying
types of impurities into the graphene materials, and their origin
can be traced to impurities within the chemical reagents used
during the synthesis7. This was confirmed by analysing a typical
solvent-exfoliated graphene, derived from high-purity graphite
(Supplementary Figure 7) and solvent, which represented a very
pure surface (Fig. 6f and Supplementary Figure 8). The HAADF
imaging technique also revealed regions where multiple layers of
GO were present as rafts or plateaus. Presence of such oxidised
rafts has been suggested through indirect characterisation
techniques before15,17,18,35. These oxidised rafts are brighter than
the single sheet areas as the HAADF image contrast is a function
of both Z2 and thickness.

Characterisation of the impurity. X-ray photoelectron spectro-
scopic (XPS) measurements were performed to further char-
acterise the silicon-based impurities. GO samples derived from
graphite with two different purities, 98% and 99.9%, were pre-
pared by drop casting on a gold-coated wafer. Since XPS is
extremely surface-sensitive with a sampling depth of only a few
nm, we decided to use XPS depth profiling in order to probe the
chemical composition at different depths. The use of an Ar cluster
source instead of a conventional Ar ion gun enables sputtering
(etching) of a wide range of materials, including organic com-
pounds, while minimising damage to the chemical structure
during the sputtering process. A comparison of the high-

resolution C 1s spectra of the two materials provided strong
evidence that the GO in both cases was essentially identical
(Fig. 7a, b). Similar levels of Si (0.09%) were detected on the
surface of both GO samples with the binding energy of the Si 2p
peak (102 eV) indicating the presence of an organosilicon com-
pound rather than an inorganic Si oxide (SiO2), which would be
expected at 103.5 eV (Fig. 7c and Supplementary Figure 9)36,37.
This compound was completely removed after only 30 s of
etching (Fig. 7d), suggesting it to be a very thin layer of adsorbed
surface contamination. In contrast to the low-purity sample, an
extensive washing and careful handling of the high-purity GO
resulted in the removal of this adsorbed surface contamination
(Supplementary Figure 10–11). Subsequent etching revealed a
clear difference between the two GO samples below the surface: in
the case of the purer GO (99.9%), Si was never detected again
above the detection limit of the technique (ca. 0.01 %), con-
firming the high purity of the material; in the case of the lower
purity GO (98%), Si reappeared over the etching and was
thereafter present at about 0.15 atomic%. The Si 2p peak position
remained at about 102 eV, characteristic of Si-O and Si-C bonds.
We also note that, even under the very mild etching conditions
used, the bombardment of the GO surface with Ar clusters caused
a significant reduction of the GO (Supplementary Figure 12–13),
which is consistent with the literature38. Interestingly, the purer
GO (99.9%) was reduced much more rapidly than the lower
purity GO (98%), probably due to a more pristine and uncon-
taminated surface.

In order to evaluate the average amounts of silicon contam-
ination in the bulk materials, wavelength dispersive X-ray
fluorescence (WD-XRF) spectroscopy was used. Results similar
to the XPS depth profiling measurement, were obtained with 0.04
± 0.007 and 0.25 ± 0.01% silicon found in the pure and non-pure
samples, respectively. Furthermore, silicon-based impurities
adversely affected the photoluminescence (PL) property of the
GO materials as shown in Fig. 7e, f and Supplementary Figure 14.
The origin of the PL in GO is due to the electronic transitions
among and between the non-oxidised carbon regions and the
boundary of oxidised carbon atom regions39. It appears that
silicon-rich impurities can effectively hinder this electronic
transition as well as being a physical barrier on the GO functional
groups. It should be noted that the size of graphite (Supplemen-
tary Figure 15) and the resultant GO sheets in both samples
(contaminated and pure GO) were almost identical (Supplemen-
tary Figure 16) eliminating the association of the observed
phenomena to any size effects. Other physical properties
measured by ultraviolet–visible (UV-Vis), Raman, Fourier trans-
form infrared (FTIR) spectroscopy and XRD spectra were almost
identical among these GO samples (Supplementary Figure 17–
20). This, together with the marked similarity in the C 1s spectra
(see XPS discussion above) and the aforementioned equal size
distribution, confirms that the chemical and physical properties
between GO samples are indistinguishable, except for the
presence of Si. As we will show in the following section, these
silicon-based impurities play a pivotal role in affecting the
performance of graphene-based devices.

Discussion
Identifying atomically dispersed and relatively low molecular
weight impurities in graphene and other 2D materials is very
challenging, as they are not easily visualised by routine imaging
methods. In the case of silicon-based impurities, in contrast to
metallic impurities11, indirect detection through electrochemical
measurements is not feasible due to the lack of an electrochemical
redox response. Other analytical methods, such as inductively
coupled plasma mass spectrometry, are also not effective as
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silicon-based compounds (i.e. silicon oxides) are unreactive in all
acids except hydrofluoric acid (HF) and all three Si isotopes are
subject to N- and O-based interferences40. These factors may
explain why the existence of such ubiquitous contamination on
solution-processed graphene, and other similar 2D materials, has
not been previously reported in the literature.

It should be noted, although there are many methods to purify
graphite such as hydrometallurgical purification methods (acid
washing, floatation method) and pyrometallurgical methods
(chlorination roasting method and the use of extremely high
temperatures, >2700 °C), these methods are not applicable after
the exfoliation in liquid media or device fabrication. In the case of
hydrometallurgical purification methods, usually a purification
level of up to 98% can be achieved. This method, although very
efficient in the removal of metallic impurities, cannot be applied

to remove Si-based impurities. On the other hand, heating the
graphene at high temperature (>2700 °C) is not a viable option in
most cases, as this will limit the versatility of end-product device
fabrication. These limitations are much more significant in the
case of delicate dispersions of graphene and GO. As such, using
high-purity graphite (commercially available) in the first place is
recommended.

An important question is whether the impurities described
here have any undesirable effect in the final performance of
practical devices. Oxygen-containing functional groups on the
hydrophilic surface of GO provide a high potential to adsorb
water molecules41. Therefore, GO-based relative humidity (RH)
sensors have shown great promise in this respect42–44. However,
the detection range and moisture uptake reported so far, although
promising, represent just an incremental improvement over
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existing technologies. We anticipated that silicon-based con-
tamination might act as a barrier, blocking the moisture absorber
sites and thus adversely affect the sensor performance. Therefore,
the first test of our hypothesis was to evaluate this effect by
fabricating an RH sensor from a variety of GO materials.

Three almost identical thin films of GO derived from various
feedstocks (a commercial GO and two derived in-house from
graphite of 98% and 99.9% purities) were deposited on a quartz
crystal microbalance (QCM) to fabricate the RH sensors. All
QCM-based humidity sensors (Fig. 8a) revealed strong dynamic
responses with excellent reproducibility towards even the lowest
humidity level (see Supplementary Table 1). Notably, the GO
prepared from the highest purity graphite (99.9%) showed a
significantly higher sensitivity (66.5 Hz/% RH) when compared to
that of less pure materials (53 Hz/% RH) (Fig. 8b). This sensitivity
towards humidity was over two times higher than the highest

ever reported sensitivity of 28.7 Hz/% RH using a
copper metal–organic framework as the sensitive layer (also see
Table S1)45. Such high sensitivity results in an exceptionally high
signal-to-noise ratio (~2000 Hz/Hz) thus allowing for trace levels
of humidity to be detected. This high level of sensitivity corre-
sponded to a very high humidity uptake, ranging from 7.5 wt% at
2.5% RH up to 32 wt% at 90% RH. The highest purity GO sheets
displayed an extremely low limit of detection (LOD) of 0.006%
RH at 27 °C, which is equivalent to 1.5 mg/m3 (2 ppm) absolute
humidity; a level which has not been reported to date. This LOD
is at least two orders of magnitude superior to the best-
performing 2D MXenes (LOD of 0.8% RH) and around one
order of magnitude better than the lowest reported LOD in the
literature46. Similar trend was found when the effect of tem-
perature is considered (Fig. 8c and Supplementary Figure 21).
The GO sensor was also found to possess excellent repeatability

GO: 98%
a b

c d

e f

In
te

ns
ity

 (
a.

u.
)

294 292
Binding energy (eV)

290 288 286 284 282 280

GO: 98%

GO: 98%

0.0025 mg/ml
0.005 mg/ml
0.01 mg/ml
0.02 mg/ml
0.04 mg/ml

GO: 99.9%

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
co

un
ts

)

112 108
Binding energy (eV)

104 100 96 92

400 500

Wavelength (nm)

600 700 800 900

GO: 98%
GO: 99.9%

A
to

m
ic

 c
on

ce
nt

ra
tio

n 
(%

)

0

0.00

150,000

100,000

50,000

0

GO: 99.9%

In
te

ns
ity

 (
co

un
ts

)

400 500

Wavelength (nm)

600 700 800 900

150,000

100,000

50,000

0

0.05

0.10

0.15

0.20

20

Etch time (min)

40 60 80 100

GO: 99.9%

In
te

ns
ity

 (
a.

u.
)

294 292
Binding energy (eV)

290 288 286 284 282 280

Fig. 7 Characterisation of typical GO films and dispersions prepared from graphite feedstock of different purities. a, b Comparison of the XPS C 1s spectral
region of GO films. c Comparison of the XPS Si 2p spectral region of GO films. d Comparison of the atomic concentration of silicon as a function of etching
time. e, f Comparison of photoluminescence spectra (λexc= 350 nm) of GO dispersions in water as a function of solution concentration. The observed
sharp peaks at 396 and 792 nm are due to the Raman peaks of water. The second-order diffraction peak at 700 nm has been removed for clarity

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07396-3 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5070 | DOI: 10.1038/s41467-018-07396-3 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and selectivity (Fig. 8d and Supplementary Figure 22), which puts
it at the forefront of the best-performing humidity sensors
reported in the literature.

GO is an amphiphilic material consisting of both hydrophobic
domains (graphenic domains) and hydrophilic parts27,47. How-
ever, the structure is mainly hydrophilic leading to easy adsorp-
tion and adherence of moisture (water) molecules onto the
surface41,48. Our results show the existence of organo-silicon
based contaminants on the surface as a hydrophobic and non-
hygroscopic component detrimentally affects the final perfor-
mance of the sensor leading to lower device performance49.
Interestingly, the selectivity was not much influenced by the
impurity implying that the impurity acts only as a passive barrier.
This superb performance can be attributed to the much higher
available hydrophilic surface area of the employed GO (99.9%

purity) when the surface contamination is eliminated. This sen-
sors’ detection range is shown to be from trace levels to up to
>90% RH with unparalleled accuracy and selectivity. Therefore,
the sensor developed from high-purity GO can eliminate the need
for employing multiple sensors to detect the different humidity
levels for any given application. Moreover, as the amount of the
material on each sensor is typically around 50 μg, the use of more
expensive high-purity precursor does not affect the overall pro-
duction cost significantly.

To evaluate the effect of silicon-based contamination on the
performance of GO after the reduction process, we investigated
the double-layer capacitance of reduced GO as a function of
contamination. It is a well-established fact that the capacitance
behaviour of graphene-based materials is very sensitive to the
available surface area50,51. Thus the masking effect of the surface
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contamination can adversely affect the double-layer charge sto-
rage capability. The performance of the three types of reduced
GO (rGO) was evaluated. These were compared based on their
cyclic voltammetric (CV) responses at 100 mV/s (Fig. 8e). All
systems showed a near-rectangular CV curve, except for the
commercial rGO. It was evident that the material prepared from
high-purity graphite (99.9%) showed a superior capacitive per-
formance and higher electrical conductivity: GO 99.9%: 320 ± 12
s/cm vs GO 98%: 210 ± 13 s/cm and commercial GO: 150 ± 16 s/
cm. The near-rectangular CV curves presented in Fig. 8f are
representative of excellent double-layer charge storage perfor-
mance even at high scan rates. Moreover, the maximum capaci-
tance value of 523 F/g recorded at 10 mV/s is close to the
theoretical capacitance limit of graphene sheets (550 F/g)23. This
clearly illustrates that the presence of silicon-based impurities can
significantly impair the capacitive performance of graphene
sheets.

The findings presented here illustrated how the performance of
graphene-based devices is critically dependent on the impurity
content, predominantly silicon-based. Furthermore, we showed
that the cleaning methods to remove this resilient contamination
were not successful, and as such the use of a high-purity pre-
cursor in order to obtain high-purity graphene is necessary.
Humidity sensors and double layer supercapacitors fabricated
with such materials showed significantly improved performance
surpassing all existing reported materials and technologies. This
emphasises that the silicon-based contamination is a ubiquitous
problem in 2D materials produced by exfoliating naturally
occurring layered crystals. It also highlights the critical impor-
tance of material purity and the need for a quality-control
approach to the production and application of 2D-based
materials.

Methods
GO synthesis. GO was synthesised with a method described previously4,27,28,47,
using graphite sources of varying purities (shown in parentheses): natural graphite
flake (98%), natural graphite powder (99%), natural graphite flake (99.8%), natural
graphite flake (99.9%), natural graphite powder (99.9995%), synthetic graphite
(99.9995%), and natural graphite powder (99.9999%) from Alfa Aesar. A com-
mercially available GO was also tested as a control. Briefly, graphite powder (1 g)
and sulphuric acid (200 mL) were mixed and stirred in a flask for 1 h. Then
KMnO4 (10 g) was added to the mixture and stirred for 1 day. The mixture was
transferred into an ice bath, and Milli-Q (200 mL) water was added slowly before
H2O2 (50 mL) were poured into the mixture. Having stirred for another 30 min, the
GO particles were then washed and centrifuged three times with HCl solution (9:1
water/HCl by volume), then centrifuged again and washed with Milli-Q water until
the pH of the solution became about 4–5.

Characterisations. Specimens for electron microscopy were prepared by deposi-
tion of GO suspensions on a holey carbon support film on a copper grid (a droplet
of 50 μg/mL). The specimens were stored in glass desiccator to avoid contamina-
tion. STEM examination was carried out using an aberration-corrected JEOL
ARM200F microscope operating at 80 kV to minimise radiation damage to the
specimens. The instrument was fitted with a cold field emission electron source and
a JEOL large area (1sr) EDS. This was coupled to a Noran System Seven analytical
system. All imaging and analysis was carried in scanning transmission mode
(STEM) using a high-resolution imaging probe of approximately 30 pA current and
0.1 nm diameter with a convergence semi-angle of 24.9 mrad. Imaging was carried
out in HAADF and BF modes, yielding mass thickness and diffraction contrast
information, respectively. The inner and outer acceptance angles for HAADF
imaging were 68 and 280 mrad, respectively, and for BF imaging, the acceptance
semi-angle was 17 mrad. Scanning images were captured using the Gatan’s
DigiScan hardware and DigitalMicrograph software.

Scanning electron microscopic (SEM) analysis were carried out by first
depositing GO sheets from their dispersions on pre‐cleaned and silanised silicon
wafer (300 nm SiO2 layer), as described previously52. Briefly, silane solution was
prepared by mixing 3‐aminopropyltriethoxysilane (Aldrich) with water (1:9 v/v)
and one drop of hydrochloric acid (Sigma–Aldrich). Precut silicon substrates were
silanised by immersing in aqueous silane solution for 30 min and then washed
thoroughly with Millipore water. GO sheets were deposited onto silanised silicon
substrates by immersing a silicon substrate into the GO dispersion (50 μg/mL) for
5 s and then into a second container containing Millipore water for 30 s and then

air‐drying. As‐deposited GO sheets were directly examined by SEM (JEOL JSM‐
7500FA). The lateral size distributions of ~500 isolated GO sheets were determined
from several SEM images and analysed using the image analysis software (ImageJ,
http://rsb.info.nih.gov/ij/). The lateral size of GO sheets was defined as the diameter
of an equal-area circle. Similarly, the size of the graphite particles was measured
using optical microscopy.

PL spectra of GO suspensions in water were acquired with a Horiba Jobin Yvon
Fluoromax-4 fluorometer with an excitation wavelength of 350 nm. Optical
absorption spectra of the same suspensions were obtained on an Agilent Cary60
UV-Vis spectrophotometer. FTIR spectroscopy of GO powders was carried out
using a Perkin-Elmer Frontier spectrometer equipped with a Pike GladiATR
attenuated total reflectance stage.

XPS analysis was performed using an AXIS Nova spectrometer (Kratos
Analytical Inc., Manchester, UK) with a monochromated Al Kα source at a power
of 180W (15 kV × 12mA), a hemispherical analyser operating in the fixed analyser
transmission mode and the standard aperture (analysis area: 0.3 × 0.7 mm2). The
total pressure in the main vacuum chamber during analysis was typically between
10−9 and 10−8 mbar. Survey spectra were acquired at a pass energy of 160 eV. C 1s
high-resolution spectra were recorded at 40 eV pass energy, yielding a typical peak
width for polymers of 0.8–1.0 eV. Each specimen was analysed at an emission angle
of 0° as measured from the surface normal with an analysis depth of between 5 and
10 nm. Depth profiling experiments were conducted using an Ar Gas Cluster Ion
Source (GCIS; Kratos Analytical Inc. Minibeam 6) operated at a cluster size of
Ar1000+ with impact energy of 10 keV, equating to partition energy of 10 eV per
atom. For the ion beam, a raster size of 1.4 × 1.4 mm2 was employed. WD-XRF
spectrometer Model S4 Pioneer, Bruker AXS Gmbh, Karlsruhe, Germany was used
to evaluate the average amounts of silicon contamination in the powder form.

QCM transducer fabrication and characterisation. The 10MHz QCM devices
were fabricated using optically polished AT-cut quartz substrates (Ø= 7.5 mm)
upon the surfaces of which metal electrodes (Ø= 4.5 mm) were e-beam evapo-
rated. The two metal electrodes were each made up of 300 nm of Ti and their
sensitivities were calculated to be 4.39 ng/cm2/Hz. Prior to humidity sorption
experiments, the mass of GO material deposited on the QCM devices was deter-
mined using an Agilent E5100A network. The centre frequency changes of the
QCMs were monitored throughout the humidity sorption tests using a Research
Quartz Crystal Microbalance (RQCM, Maxtek), which has a frequency resolution
of ±0.03 Hz. The QCM response magnitudes were normalised using the mass
deposition data in order to obtain a better understanding of the affinity (based on
mass) of each material towards humidity.

Material transfer onto the QCM. In order to make a RH sensor for testing GO
from different sources, a 10 MHz QCM transducer with sensitivity of 4.39 ng/cm2/
Hz was employed. Three almost identical thin films of GO were deposited on the
QCM devices for testing. Commercially available GO was deposited on the first
QCM while the other two consisted of synthesised GO in-house from graphite with
purities of 98% and 99.9%. GO dispersions (1 mg/mL) from these sources were
drop cast (75 µL) onto the QCM device and were dried at room temperature. The
change in the QCM frequency (before and after material deposition) confirmed
that similar masses of each GO material were deposited on their respective QCM
devices. These deposited mass values were used to normalise the humidity uptake
of the materials.

Humidity uptake measurements. The humidity uptake measurements were
performed in a custom-built environmental chamber, which housed the QCM
devices while maintaining a constant operating temperature of 27 °C. The total gas
flow rate was kept constant at 200 mL/min throughout the experiments using a
multi-channel gas delivery system, employing mass flow controllers (MKS
instruments, Inc. USA). The humidity levels were generated using an RH generator
(V-Gen from InstruQuest). This humidity level constantly produced by the gen-
erator was equivalent to 100% RH at 27 °C or 25.6 g/m3 of water vapour in air. This
level of humidity was diluted (by mass flow controllers) to obtain the different
concentrations of water vapour required. The humidity sensing experiments
throughout the study were such that the sensors were exposed to humidity for 15
min prior to being allowed to recover for a further 15 min under a dry nitrogen
atmosphere. The humidity exposure and recovery events combined are referred to
as a “pulse” from here on. The signal was determined from the highest humidity
exposure (response magnitude) while the noise was determined from a blank
profile used in the LOD calculations53,54.

The selectivity and repeatability experiments were performed with a 50% RH
level at 27 °C. Selectivity tests involved exposure to ammonia, acetaldehyde,
ethylmercaptan, dimethyl disulphide and methylethylketone with/without the
presence of humidity. The contaminant gases and their concentrations were chosen
due to their relevance in industrial environments. Repeatability experiments
involved the exposure to 50% RH at 27 °C over 10 pulses in a continuous manner.
For sensor performance comparison, the response time (t90), detection limit,
sensitivity and selectivity parameters were used in this study46,54.
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Double-layer capacitor performance. The active layer on the electrodes was
fabricated through deposition of 5 µL of GO solution (1 mg/mL) on Pt electrodes.
The chemical reduction was performed by immersing the electrodes in a solution
containing 5 wt% ascorbic acid at 80 °C for 4 h. The double-layer charge storage
was investigated using CV experiments using a two-electrode set-up and H2SO4 (1
M) electrolyte. Please note, in order to highlight the effect of silica contamination
(as a barrier) and in order to minimise the effect of restacking of GO sheets on the
performance, thin films (<1 µm thickness) of GO were deposited on the electrode.
However, for large-scale device fabrication a much higher mass of active material is
recommended. This is discussed in the literature55,56.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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