1,802,709 research outputs found

    Single particle Green's functions and interacting topological insulators

    Full text link
    We study topological insulators characterized by the integer topological invariant Z, in even and odd spacial dimensions. These are well understood in case when there are no interactions. We extend the earlier work on this subject to construct their topological invariants in terms of their Green's functions. In this form, they can be used even if there are interactions. Specializing to one and two spacial dimensions, we further show that if two topologically distinct topological insulators border each other, the difference of their topological invariants is equal to the difference between the number of zero energy boundary excitations and the number of zeroes of the Green's function at the boundary. In the absence of interactions Green's functions have no zeroes thus there are always edge states at the boundary, as is well known. In the presence of interactions, in principle Green's functions could have zeroes. In that case, there could be no edge states at the boundary of two topological insulators with different topological invariants. This may provide an alternative explanation to the recent results on one dimensional interacting topological insulators.Comment: 16 pages, 2 figure

    Superconducting Plate in Transverse Magnetic Field: New State

    Full text link
    A model to describe Cooper pairs near the transition point (on temperature and magnetic field), when the distance between them is big compared to their sizes, is proposed. A superconducting plate whose thickness is less than the pair size in the transverse magnetic field near the critical value Hc2H_{c2} is considered as an application of the model. A new state that is energetically more favourable than that of Abrikosov vortex state within an interval near the transition point was obtained. The system's wave function in this state looks like that of Laughlin's having been used in fractional quantum Hall effect (naturally, in our case - for Cooper pairs as Bose-particles) and it corresponds to homogeneous incompressible liquid. The state energy is proportional to the first power of value (1H/Hc2)(1 - H/H_{c2}), unlike the vortex state energy having this value squared. The interval of the new state existence is greater for dirty specimens.Comment: 7 page

    Pipelike current-carrying vortices in two-component condensates

    Full text link
    We study straight vortices with global longitudinal currents in the Bogomol'ny limit of the Abelian Higgs model with two charged scalar fields. The model possesses global SU(2) and local electromagnetic U(1) symmetries spontaneously broken to global U(1) group, and corresponds to a semilocal limit of the standard electroweak model. We show that the contribution of the global SU(2) current to the vortex energy is proportional to the total current squared. Locally, these vortices carry also longitudinal electromagnetic currents, while the total electromagnetic current flowing through a transverse section of the vortex is always zero. The vortices with high winding numbers have, in general, a nested pipelike structure. The magnetic field of the vortex is concentrated at a certain distance from the geometric center of the vortex, thus resembling a "pipe." This magnetic pipe is layered between two electrically charged pipes that carry longitudinal electric currents in opposite directions.Comment: 11 pages, 14 figures, RevTeX 4.1; v2: references added, minor changes, Figure 8 (a visualization of the nested structure of the pipelike vortex) is replaced, published versio

    Knots in a Spinor Bose-Einstein Condensate

    Full text link
    We show that knots of spin textures can be created in the polar phase of a spin-1 Bose-Einstein condensate, and discuss experimental schemes for their generation and probe, together with their lifetime.Comment: 4 pages, 3 figure

    Vacuum Energy: Myths and Reality

    Full text link
    We discuss the main myths related to the vacuum energy and cosmological constant, such as: ``unbearable lightness of space-time''; the dominating contribution of zero point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.Comment: 24 pages, 2 figures, submitted to the special issue of Int. J. Mod. Phys. devoted to dark energy and dark matter, IJMP styl

    Resonant relativistic corrections and the A_y problem

    Get PDF
    We study relativistic corrections to nuclear interactions caused by boosting the two-nucleon interaction to a frame in which their total momentum does not vanish. These corrections induce a change in the computed value of the neutron-deuteron analyzing power A_y that is estimated using the plane-wave impulse approximation. This allows a transparent analytical calculation that demonstrates the significance of relativistic corrections. Faddeev calculations are however needed to conclude on the A_y puzzle.Comment: 8 pages, 2 figures, minor addition, to appear in Phys. Rev.

    Mesoscopic supersolid of dipoles in a trap

    Full text link
    A mesoscopic system of indirect dipolar bosons trapped by a harmonic potential is considered. The system has a number of physical realizations including dipole excitons, atoms with large dipolar moment, polar molecules, Rydberg atoms in inhomogenious electric field. We carry out a diffusion Monte Carlo simulation to define the quantum properties of a two-dimensional system of trapped dipoles at zero temperature. In dimensionless units the system is described by two control parameters, namely the number of particles and the strength of the interparticle interaction. We have shown that when the interparticle interaction is strong enough a mesoscopic crystal is formed. As the strength of interactions is decreased a multi-stage melting takes place. Off-diagonal order in the system is tested using natural orbitals analysis. We have found that the system might be Bose-condensed even in the case of strong interparticle interactions. There is a set of parameters for which a spatially ordered structure is formed while simultaneously the fraction of Bose condensed particles is non zero. This might be considered as a realization of a mesoscopic supersolid.Comment: 5 figure

    Polarized Electric Current in Semiclassical Transport with Spin-Orbit Interaction

    Get PDF
    Semiclassical solutions of two-dimensional Schrodinger equation with spin-orbit interaction and smooth potential are considered. In the leading order, spin polarization is in-plane and follows the evolution of the electron momentum for a given subband. Out-of-plane spin polarization appears as a quantum correction, for which an explicit expression is obtained. We demonstrate how spin-polarized currents can be achieved with the help of a barrier or quantum point contact open for transmission only in the lower subband.Comment: 6 pages, 2 figure

    Is nonrelativistic gravity possible?

    Full text link
    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.Comment: 4 pages, v2, typos corrected, published in Physical Review
    corecore