900 research outputs found
Optimal Compression and Transmission Rate Control for Node-Lifetime Maximization
We consider a system that is composed of an energy constrained sensor node
and a sink node, and devise optimal data compression and transmission policies
with an objective to prolong the lifetime of the sensor node. While applying
compression before transmission reduces the energy consumption of transmitting
the sensed data, blindly applying too much compression may even exceed the cost
of transmitting raw data, thereby losing its purpose. Hence, it is important to
investigate the trade-off between data compression and transmission energy
costs. In this paper, we study the joint optimal compression-transmission
design in three scenarios which differ in terms of the available channel
information at the sensor node, and cover a wide range of practical situations.
We formulate and solve joint optimization problems aiming to maximize the
lifetime of the sensor node whilst satisfying specific delay and bit error rate
(BER) constraints. Our results show that a jointly optimized
compression-transmission policy achieves significantly longer lifetime (90% to
2000%) as compared to optimizing transmission only without compression.
Importantly, this performance advantage is most profound when the delay
constraint is stringent, which demonstrates its suitability for low latency
communication in future wireless networks.Comment: accepted for publication in IEEE Transactions on Wireless
Communicaiton
Design Guidelines for Training-based MIMO Systems with Feedback
In this paper, we study the optimal training and data transmission strategies
for block fading multiple-input multiple-output (MIMO) systems with feedback.
We consider both the channel gain feedback (CGF) system and the channel
covariance feedback (CCF) system. Using an accurate capacity lower bound as a
figure of merit, we investigate the optimization problems on the temporal power
allocation to training and data transmission as well as the training length.
For CGF systems without feedback delay, we prove that the optimal solutions
coincide with those for non-feedback systems. Moreover, we show that these
solutions stay nearly optimal even in the presence of feedback delay. This
finding is important for practical MIMO training design. For CCF systems, the
optimal training length can be less than the number of transmit antennas, which
is verified through numerical analysis. Taking this fact into account, we
propose a simple yet near optimal transmission strategy for CCF systems, and
derive the optimal temporal power allocation over pilot and data transmission.Comment: Submitted to IEEE Trans. Signal Processin
Variation of Electrostatic Coupling and Investigation of Current Percolation Paths in Nanocrystalline Silicon Cross Transistors
Nanocrystalline silicon thin films are promising materials for the development of advanced Large Scale Integration compatible quantum-dot and single-electron charging devices. The films consist of nanometer-scale grains of crystalline silicon, separated by amorphous silicon or silicon dioxide grain boundaries up to a few nanometer thick. These films have been used to fabricate single-electron transistor and memory devices, where the grains form single-electron charging islands isolated by tunnel barriers formed by the grain boundaries. The grain boundary tunnel barrier isolating the grains is also of great importance, as this determines the extent of the electrostatic and tunnel coupling between different grains. These effects can lead to the nanocrystalline silicon thin film behaving as a system of coupled quantum dots.& more..
Joint Resource Optimization for Multicell Networks with Wireless Energy Harvesting Relays
This paper first considers a multicell network deployment where the base
station (BS) of each cell communicates with its cell-edge user with the
assistance of an amplify-and-forward (AF) relay node. Equipped with a power
splitter and a wireless energy harvester, the self-sustaining relay scavenges
radio frequency (RF) energy from the received signals to process and forward
the information. Our aim is to develop a resource allocation scheme that
jointly optimizes (i) BS transmit powers, (ii) received power splitting factors
for energy harvesting and information processing at the relays, and (iii) relay
transmit powers. In the face of strong intercell interference and limited radio
resources, we formulate three highly-nonconvex problems with the objectives of
sum-rate maximization, max-min throughput fairness and sum-power minimization.
To solve such challenging problems, we propose to apply the successive convex
approximation (SCA) approach and devise iterative algorithms based on geometric
programming and difference-of-convex-functions programming. The proposed
algorithms transform the nonconvex problems into a sequence of convex problems,
each of which is solved very efficiently by the interior-point method. We prove
that our algorithms converge to the locally optimal solutions that satisfy the
Karush-Kuhn-Tucker conditions of the original nonconvex problems. We then
extend our results to the case of decode-and-forward (DF) relaying with
variable timeslot durations. We show that our resource allocation solutions in
this case offer better throughput than that of the AF counterpart with equal
timeslot durations, albeit at a higher computational complexity. Numerical
results confirm that the proposed joint optimization solutions substantially
improve the network performance, compared with cases where the radio resource
parameters are individually optimized
- …