900 research outputs found

    Optimal Compression and Transmission Rate Control for Node-Lifetime Maximization

    Get PDF
    We consider a system that is composed of an energy constrained sensor node and a sink node, and devise optimal data compression and transmission policies with an objective to prolong the lifetime of the sensor node. While applying compression before transmission reduces the energy consumption of transmitting the sensed data, blindly applying too much compression may even exceed the cost of transmitting raw data, thereby losing its purpose. Hence, it is important to investigate the trade-off between data compression and transmission energy costs. In this paper, we study the joint optimal compression-transmission design in three scenarios which differ in terms of the available channel information at the sensor node, and cover a wide range of practical situations. We formulate and solve joint optimization problems aiming to maximize the lifetime of the sensor node whilst satisfying specific delay and bit error rate (BER) constraints. Our results show that a jointly optimized compression-transmission policy achieves significantly longer lifetime (90% to 2000%) as compared to optimizing transmission only without compression. Importantly, this performance advantage is most profound when the delay constraint is stringent, which demonstrates its suitability for low latency communication in future wireless networks.Comment: accepted for publication in IEEE Transactions on Wireless Communicaiton

    Design Guidelines for Training-based MIMO Systems with Feedback

    Full text link
    In this paper, we study the optimal training and data transmission strategies for block fading multiple-input multiple-output (MIMO) systems with feedback. We consider both the channel gain feedback (CGF) system and the channel covariance feedback (CCF) system. Using an accurate capacity lower bound as a figure of merit, we investigate the optimization problems on the temporal power allocation to training and data transmission as well as the training length. For CGF systems without feedback delay, we prove that the optimal solutions coincide with those for non-feedback systems. Moreover, we show that these solutions stay nearly optimal even in the presence of feedback delay. This finding is important for practical MIMO training design. For CCF systems, the optimal training length can be less than the number of transmit antennas, which is verified through numerical analysis. Taking this fact into account, we propose a simple yet near optimal transmission strategy for CCF systems, and derive the optimal temporal power allocation over pilot and data transmission.Comment: Submitted to IEEE Trans. Signal Processin

    Variation of Electrostatic Coupling and Investigation of Current Percolation Paths in Nanocrystalline Silicon Cross Transistors

    No full text
    Nanocrystalline silicon thin films are promising materials for the development of advanced Large Scale Integration compatible quantum-dot and single-electron charging devices. The films consist of nanometer-scale grains of crystalline silicon, separated by amorphous silicon or silicon dioxide grain boundaries up to a few nanometer thick. These films have been used to fabricate single-electron transistor and memory devices, where the grains form single-electron charging islands isolated by tunnel barriers formed by the grain boundaries. The grain boundary tunnel barrier isolating the grains is also of great importance, as this determines the extent of the electrostatic and tunnel coupling between different grains. These effects can lead to the nanocrystalline silicon thin film behaving as a system of coupled quantum dots.& more..

    Joint Resource Optimization for Multicell Networks with Wireless Energy Harvesting Relays

    Get PDF
    This paper first considers a multicell network deployment where the base station (BS) of each cell communicates with its cell-edge user with the assistance of an amplify-and-forward (AF) relay node. Equipped with a power splitter and a wireless energy harvester, the self-sustaining relay scavenges radio frequency (RF) energy from the received signals to process and forward the information. Our aim is to develop a resource allocation scheme that jointly optimizes (i) BS transmit powers, (ii) received power splitting factors for energy harvesting and information processing at the relays, and (iii) relay transmit powers. In the face of strong intercell interference and limited radio resources, we formulate three highly-nonconvex problems with the objectives of sum-rate maximization, max-min throughput fairness and sum-power minimization. To solve such challenging problems, we propose to apply the successive convex approximation (SCA) approach and devise iterative algorithms based on geometric programming and difference-of-convex-functions programming. The proposed algorithms transform the nonconvex problems into a sequence of convex problems, each of which is solved very efficiently by the interior-point method. We prove that our algorithms converge to the locally optimal solutions that satisfy the Karush-Kuhn-Tucker conditions of the original nonconvex problems. We then extend our results to the case of decode-and-forward (DF) relaying with variable timeslot durations. We show that our resource allocation solutions in this case offer better throughput than that of the AF counterpart with equal timeslot durations, albeit at a higher computational complexity. Numerical results confirm that the proposed joint optimization solutions substantially improve the network performance, compared with cases where the radio resource parameters are individually optimized
    • …
    corecore