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Abstract—This paper first considers a multicell network de-
ployment where the base station (BS) of each cell communicates
with its cell-edge user with the assistance of an amplify-and-
forward (AF) relay node. Equipped with a power splitter and
a wireless energy harvester, the self-sustaining relay scavenges
radio frequency (RF) energy from the received signals to process
and forward the information. Our aim is to develop a resource
allocation scheme that jointly optimizes (i) BS transmit powers,
(ii) received power splitting factors for energy harvesting and
information processing at the relays, and (iii) relay transmit pow-
ers. In the face of strong intercell interference and limited radio
resources, we formulate three highly-nonconvex problems with
the objectives of sum-rate maximization, max-min throughput
fairness and sum-power minimization. To solve such challenging
problems, we propose to apply the successive convex approxi-
mation (SCA) approach and devise iterative algorithms based
on geometric programming and difference-of-convex-functions
programming. The proposed algorithms transform the nonconvex
problems into a sequence of convex problems, each of which is
solved very efficiently by the interior-point method. We prove
that our algorithms converge to the locally optimal solutions
that satisfy the Karush-Kuhn-Tucker conditions of the original
nonconvex problems. We then extend our results to the case
of decode-and-forward (DF) relaying with variable timeslot
durations. We show that our resource allocation solutions in this
case offer better throughput than that of the AF counterpart
with equal timeslot durations, albeit at a higher computational
complexity. Numerical results confirm that the proposed joint
optimization solutions substantially improve the network perfor-
mance, compared with cases where the radio resource parameters
are individually optimized.

Index Terms—Convex optimization, multicell interference, re-
source allocation, successive convex approximation, wireless en-
ergy harvesting

I. INTRODUCTION

Multicell networks with universal frequency reuse play an
important role in meeting the ever increasing demand of
ubiquitous wireless coverage and high data throughput in the
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near future [1]–[3]. One of the challenges in such networks is
to maintain the quality of service requirements for cell-edge
users due to the interference from the neighboring cells [1],
[2]. The deployment of relays is regarded as a viable solution
in eliminating coverage holes in areas that are otherwise
difficult for BSs’ signals to penetrate [4], [5]. In addition, the
performance of multicell networks can be further enhanced
by utilizing coordinated multipoint transmission and reception
(CoMP) techniques [6], [7], in which BSs and relays cooperate
with one another to best serve the cell-edge users.

Due to random positions and mobility of users, relays
need to be opportunistically deployed where most needed.
This can be achieved if relays do not require a wired power
connection and are powered using alternative ‘green’ energy
resources. Recently, radio frequency (RF) or wireless energy
harvesting has emerged as an attractive solution to power
wireless nodes [8]. While energy harvesting from ambient
sources may not be sufficient to power relay nodes, carefully
designed wireless power transfer links can be used to power
relay nodes [8]–[10]. In this regard, it is crucial to ensure that
the very different information decoding and power transfer
power sensitivity requirements are met at the receiver (e.g.,
−60 dBm for information receivers and −10 dBm to −30
dBm for energy receivers [8]).

A multicell network with energy harvesting relays poses
interesting design challenges, such as: (i) How to effectively
manage intercell interference, (ii) How to allocated limited
power at the base stations (BSs), (iii) How to design wireless
power transfer links for amplify-and-forward (AF) and decode-
and-forward (DF) relays, and (iv) How the harvested RF en-
ergy is utilized at the relays. Existing research in the literature
has partially addressed these important issues. The design
of wireless energy harvesting relays in point-to-point single-
cell systems is considered in [11]–[17]. Assuming simultane-
ous wireless information and power transfer in a single-cell
network, the power control problem for multiuser broadband
wireless systems without relays is studied in [18]. In [19], a
similar problem is examined, albeit in the context of multiuser
multi-input-multi-output (MIMO) systems. Considering relays
in a single-cell network, resource allocation schemes for the
remote radio heads are specifically developed in [20]. In
the downlink of a multicell multiuser interference network,
coordinated scheduling and power control algorithms for the
macrocell BSs only are proposed in [21], [22]. Recently, in
[23], an optimal power splitting rule is devised for energy
harvesting and information processing at the self-sustaining
relays of multiuser interference networks. However, [23] does
not consider the important issue of allocating the transmit
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powers at the BSs and the relays.
In this paper, we consider a multicell network in which the

BS of each cell communicates with its cell-edge user via a
wireless energy harvesting relay node. The relay is equipped
with an energy harvesting receiver and information transceiver.
We assume that the energy harvesting receiver implements
a power-splitting (PS) based receiver architecture [24], i.e.,
the relay uses a portion of the received signal power for
energy harvesting and the remaining signal energy as input
to the information transceiver. Using the harvested energy,
the information transceiver employs either AF or DF relaying
to forward the received signal to its corresponding user. The
BSs in the multicell network adopt CoMP, i.e., they share the
channel quality measurements and schedule the transmissions,
allowing for more efficient radio resource utilization.

First, we formulate three new resource optimization prob-
lems for multicell networks with EH-enabled AF relays,
namely, sum-rate maximization, minimum-throughput maxi-
mization, and sum-power minimization1. The objective is to
jointly optimize the transmit powers at the BSs and the relays
and also find the optimal power splitting rule at the relays.
Our formulations directly target the critical issue of multicell
interference, at the same time as meeting the stringent con-
straints on the available transmit powers at the BSs and the
relays. Since the optimization variables are strongly coupled
with many nonlinear cross-multiplying terms, the formulated
problems are highly nonconvex. To the best of our knowledge,
there exists no practical method that guarantees to offer the
true global optimality to these challenging problems.

Then, we exploit the problem structure and adopt the suc-
cessive convex approximation (SCA) method to transform the
highly nonconvex problems into a series of convex subprob-
lems. Here, we specifically tailor the generic SCA framework
via the applications of geometric programming (GP) and
difference-of-convex-functions (DC) programming. At each
step of our proposed iterative algorithms, we efficiently solve
the resulting convex problem by the interior-point method.
We analytically prove that our developed algorithms generate
a sequence of improved feasible solutions, which eventually
converge to a locally optimal solution satisfying the Karush-
Kuhn-Tucker (KKT) conditions of the original problems. Note
that the general convergence analysis of SCA method is estab-
lished in [26] and SCA-based solutions have been empirically
shown to often achieve the global optimality in many practical
applications, e.g., in wireline DSL networks [27], wireless
interference networks [28], [29], and small-cell heterogeneous
networks [30].

Finally, we show that the proposed SCA-based approach
can be extended to the more general case of variable timeslot
durations with DF relaying. Numerical examples with realistic
network parameters confirm that our joint optimization solu-
tions significantly outperform those where the radio resource
parameters are individually optimized.

The rest of this paper is organized as follows: Sec. II

1 A preliminary version of this work, which considers the sum-rate maxi-
mization problem for AF relaying only, has been accepted for presentation at
the 2015 IEEE International Conference on Communications (ICC), London,
U.K. [25].
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Fig. 1. A multicell network consists of N cells and a central processing (CP)
unit. Each cell has a base station, a relay and a cell-edge user. For clarity, we
only show the interfering scenarios in Cell 1, i.e., at relay 1 and user 1. In
general, interference happens at all N relays and N users.

presents the system model and states the key assumptions used
throughout this work. Sec. III presents the signal model for
AF relaying and equal timeslot durations. Sec. IV formulates
the nonconvex resource allocation problems and introduces the
generic SCA framework. Secs. V and VI propose the GP-based
and DC-based SCA solutions for AF relaying, respectively.
Sec. VII extends our results to the case of variable timeslot
durations with DF relaying. Sec. VIII presents numerical
results to confirm the advantages of our proposed algorithms.
And Sec. IX concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider the downlink transmissions in an N -cell network
with universal frequency reuse, i.e., the same radio frequencies
are used in all cells. Adopting CoMP, we assume that the base
stations (BSs) are connected to a central processing (CP) unit
which coordinates the multicellular transmissions and radio
resource management. The network under consideration is
illustrated in Fig. 1. Note that although square-cells are shown
in Fig. 1, the analysis and proposed solutions in this paper are
valid for any cellular network geometry.

Let N = {1, . . . , N} denote the set of all cells. In each
cell i ∈ N , the BS attempts to establish communication with
its cell-edge users. We assume that these users are located
in the ‘signal dead zones’, where no direct signal from their
serving BS can reach. A relay node is deployed in each cell
to assist in forwarding the signal from the BS, extending
the network coverage to the distant users. We assume that
orthogonal channels are assigned to users in each cell (e.g.,
by means of TDMA, FDMA or OFDMA); hence, the intracell
interference is eliminated. Therefore, we only focus on the



resource allocation in one channel, which corresponds to only
one user in a cell. By BS i, relay i and user i, we mean the
BS, the relay and the single user of cell i ∈ N , respectively.

We assume that the relays are energy-constrained nodes and
they harvests energy from the RF signals of all BSs, using the
power-splitting based receiver architecture. While each BS has
a maximum power limit Pmax available for transmission, it
must transmit with a minimum transmit power Pmin to ensure
that the energy harvesting circuit at the relay is activated. The
harvested energy is used by a relay transceiver to process and
forward the BS signal to its intended user. We further assume
that the relays are mounted on the building rooftops to have
a line-of-sight link from the serving BSs.

Let hi,j be the channel coefficient from the BS i to relay
j and gj,k be the channel coefficient from the relay j to user
k. We assume that all the BSs send the available channel
state information (CSI) to the CP unit via a dedicated control
channel. In this paper, we assume perfect knowledge of CSI
at the BSs, allowing for a benchmark performance to be
determined.

III. SIGNAL MODEL WITH AF RELAYING

We first consider the case of AF relaying where we divide
the total transmission block time T into two equal timeslots.
The first timeslot includes BS-to-relay transmissions and en-
ergy harvesting at the relays. During the first timeslot, the
relays do not transmit. The second timeslot includes signal
processing at the relays and relay-to-user transmissions. In this
second timeslot, the BSs do not transmit. The operations in
each timeslot are illustrated in Fig. 2, which will be further
discussed in the following.

A. BS-to-Relay Transmissions and Wireless Energy Harvesting
at Relay Receivers

In the first timeslot [0, T/2], let xi be the normalized
information signal to be sent by BS i, i.e., E{|xi|2} = 1, where
E{·} denotes the expectation operator and | · | the absolute
value operator. Let Pmin ≤ Pi ≤ Pmax denote the transmit
power of BS i, dhi,j the distance between BS i and relay j,
and β the path-loss exponent. Assuming that nai is the zero-
mean additive white Gaussian noise (AWGN) with variance
σai at the receiving antenna of relay i, the received signal at
relay i can be expressed as:

yRi =
hi,i√(
dhi,i
)β
√
Pixi +

N∑

j=1,j 6=i

hj,i√(
dhj,i
)β
√
Pjxj + nai .

(1)

We assume that each relay is equipped with a power splitter
that determines how much received signal energy should be
dedicated to the energy harvester and the signal processing
receiver [11], [12], [23], [24]. As shown in Fig. 2, the power
splitter at relay i ∈ N divides the power of yRi into two
parts in the proportion of αi : (1 − αi). Here, αi ∈ (0, 1) is
termed as the power splitting factor. The first part

√
αiyRi is

processed by the energy harvester and stored as energy (e.g.,
by charging a battery at relay i) for the use in the second

timeslot. The amount of energy harvested at relay i is given
by:

Ei =
ηαiT

2

N∑

j=1

Pj h̄j,i, (2)

where η ∈ (0, 1) is the efficiency of energy conversion and
h̄j,i , |hj,i|2

(
dhj,i
)−β

, ∀i, j ∈ N , is the effective channel gain
from BS j to relay i (including the effects of both small-scale
fading and large-scale path loss).

The second part
√

1− αiyRi of the received signal is passed
to an information transceiver. In Fig. 2, nri denotes the AWGN
with zero mean and variance σri introduced by the baseband
processing circuitry. Since antenna noise power σai is very
small compared to the circuit noise power σri in practice [31],
nai has a negligible impact on both the energy harvester and
the information transceiver of relay i. Thus, for simplicity, we
will ignore the effect of nai in the following analysis by setting
σai = 0. The signal at the input of the information transceiver
of relay i can be written as:

yIRi =
√

1− αiyRi + nri

=
√

1− αi
hi,i√(
dhi,i
)β
√
Pixi

+
√

1− αi
N∑

j=1,j 6=i

hj,i√(
dhj,i
)β
√
Pjxj + nri , (3)

where the first term in (3) is the desired signal from BS i, and
the second term is the total interference from all other BSs.

B. Signal Processing at Relays and Relay-to-User Transmis-
sions

In the second timeslot [T/2, T ], the information transceiver
amplifies the signal yIRi prior to forwarding it to user i. Denote
the transmit power of relay transceiver i as pi. With the
harvested energy Ei in (55), the maximum power available
for transmission at relay i is given by Ei

T/2 = 2Ei
T , which

means that:

pi ≤
2Ei
T

= ηαi

N∑

j=1

Pj h̄j,i. (4)

The transmitted signal from relay i to user i can then be written
as:

xRi =

√
piy

I
Ri√√√√(1− αi)

N∑

j=1

Pj h̄j,i + σri

, (5)

where the denominator of (5) represents an amplifying factor
that ensures power constraint (4) be met.

Now, the received signal at user i is:

yUi =
gi,i√(
dgi,i
)β xRi +

N∑

j=1,j 6=i

gj,i√(
dgj,i
)β xRj + nui , (6)
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Fig. 2. BS-to-user communication assisted by a RF-powered relay

where dgi,j denotes the distance between relay i and user j,
and nui the AWGN with zero mean and variance σui at the
receiver of user i. Substituting xRi in (5) into (6) yields:

yUi =
gi,i
√
piy

I
Ri√√√√(dgi,i

)β
[

(1− αi)
N∑

k=1

Pkh̄k,i + σri

]

+

N∑

j=1,j 6=i

gj,i
√
pjy

I
Rj√√√√(dgi,i

)β
[

(1− αj)
N∑

k=1

Pkh̄k,j + σrj

] + nui .

(7)

With yIRi defined in (3), we can then write (7) explicitly as:

yUi =
gi,ihi,i

√
piPi(1− αi)xi√√√√(dgi,idhi,i

)β
[

(1− αi)
N∑

k=1

Pkh̄k,i + σri

]

+

gi,i
√
pi(1− αi)

N∑

j=1,j 6=i

hj,i√(
dhj,i
)β
√
Pjxj

√√√√(dgi,i
)β
[

(1− αi)
N∑

k=1

Pkh̄k,i + σri

]

+
gi,i
√
pin

r
i√√√√(dgi,i

)β
[

(1− αi)
N∑

k=1

Pkh̄k,i + σri

]

+

N∑

j=1,j 6=i

gj,i
√
pjy

I
Rj√√√√(dgj,i

)β
[

(1− αj)
N∑

k=1

Pkh̄k,j + σrj

] + nui .

(8)

The first term in (8) represents the desired signal from BS i to
its serviced user i, whereas other terms represent the intercell
interference and the noise.

Without loss of generality, let us assume σri = σui =
σ, ∀i ∈ N . From (8), the signal-to-interference-plus-noise
ratio (SINR) at the receiver of user i is given in (9) [see the
bottom of this page], where we define

φi,j1 ,
ḡi,ih̄j,i
σ2

; φi,j2 ,
h̄j,i
σ

; φi,j3 ,
ḡj,i
σ

; φi,j,k4 ,
ḡj,ih̄k,i
σ2

.

(10)

where ḡj,i , |gj,i|2
(
dgj,i
)−β

, ∀i, j ∈ N . For notational
convenience, let us also define P , [P1, . . . , PN ]T ,p ,

γi =
φi,i1 Pipi(1− αi)

N∑

j=1,j 6=i

φi,j1 Pjpi(1− αi) +

N∑

j=1

(
φi,j2 Pj(1− αi) + φi,j3 pj

)
+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpj(1− αi) + 1

, (9)



[p1, . . . , pN ]T , and α , [α1, . . . , αN ]T . From (9), the
achieved throughput in bps/Hz (bits per second per Hz) of
cell i is given by

τi(P,p,α) =
1

2
log2(1 + γi). (11)

An important observation from (9) and (11) is that by dedi-
cating more received power at relay i for energy harvesting
(i.e. increasing αi), one might actually decrease the end-to-end
throughput in cell i. This can be verified upon dividing both
the numerator and the denominator of γi in (9) by (1 − αi).
However if one opts to decrease αi, the transmit power avail-
able at the information transceiver of relay i will be further
limited [see (4)], thus potentially reducing the corresponding
data rate τi. Similarly, increasing the BS transmit power Pi or
the relay transmit power pi does not necessarily increase the
throughput τi of cell i. The reason is that Pi and pi appear in
the positive terms in both the numerator and the denominator
of γi. This suggests the importance of the resource allocation
problem in this context, which will be addressed in the next
section.

IV. JOINT RESOURCE OPTIMIZATION PROBLEMS FOR AF
RELAYING

In this paper, we aim to devise an optimal tradeoff of all
three parameters, transmit power at BSs, P, transmit power at
relays, p, and power splitting factor at relays, α, to maximize
the performance of the multicell network under consideration.
Specifically, we will study the following problems which
jointly optimize (P,p,α) for three different design objectives.

A. Problem (P1): Sum-Rate Maximization

We assume that Pmax is the maximum power available
for transmission at each BS. Also, Pmin is the minimum
transmit power required at each BS to ensure the activation
of energy harvesting circuitry at the relay. The problem of
sum throughput maximization is formulated as follows.

max
P,p,α

N∑

i=1

τi (12a)

s.t. 0 ≤ αi ≤ 1 , ∀i ∈ N (12b)
Pmin ≤ Pi ≤ Pmax , ∀i ∈ N (12c)

0 ≤ pi ≤ ηαi
N∑

j=1

Pj h̄j,i, ∀i ∈ N . (12d)

In this formulation, (12a) is the total network throughput
whereas (12b) are the constraints for the power splitting factors
for all relays. Also, (12c) and (12d) ensure that the transmit
powers at the BSs and relays do not exceed the maximum
allowable.

B. Problem (P2): Max-Min Throughput Fairness

In Problem (P1), the network sum-rate is maximized without
any consideration given to the throughput actually achieved
by the individual users. It might happen that users with
more favorable links conditions are allocated with most of

the radio resources, leaving nothing for others to fulfill their
bare minimum QoS requirements. The latter includes cell-edge
users who are the victims of strong intercell interference. In
the following, we formulate a max-min fairness problem where
the throughput of the most disadvantaged user is maximized.

max
P,p,α

min
i∈N

τi (13a)

s.t. (12b)− (12d).

From the network design perspective, (13) can be regarded as
the problem of maximizing a common throughput:

max
P,p,α,τ

τ (14a)

s.t. τi ≥ τ ≥ 0, ∀i ∈ N (14b)
(12b)− (12d),

where τ is an auxiliary variable that denotes the common
throughput.

C. Problem (P3): Sum-Power Minimization

Different from Problems (P1) and (P2), our objective here
is to minimize the total transmit power consumption subject
to guaranteeing some minimum data throughput τmin for each
user:

min
P,p,α

N∑

i=1

Pi (15a)

s.t. τi ≥ τmin, ∀i ∈ N (15b)
(12b)− (12d),

This problem is of particular interest for “green” communica-
tions, where one wishes to reduce the environmental impacts
of the large-scale deployment of wireless communication
networks. At the same time, the performance of all cell-edge
users is protected with constraint (15b).

All three problems (P1), (P2) and (P3) are highly nonconvex
in (P,p,α) because the throughput τi in (11) is highly
nonconvex in those variables. Even if we fix p and α and
try to optimize the BS transmit power P alone, τi would still
be highly nonconvex in the remaining variable P due to the
cross-cell interference terms. Simultaneously optimizing P,p
and α will be much more challenging due to the nonlinearity
introduced by the cross-multiplying terms, e.g., Pkpjαi in (9)
and αiPj in (12d).

To efficiently solve Problems (P1), (P2) and (P3), we
propose to adopt the successive convex approximation (SCA)
approach [26]–[30], [32] to transform the original nonconvex
problems into a sequence of relaxed convex subproblems.
The key steps of the generic SCA approach are summarized
in Algorithm 1 for our formulated optimization problems.
However, in applying the SCA approach, there remain two
key questions: (i) How to perform the approximation in Step
2 in generic Algorithm 1? (ii) Given that the approximation is
known, how to prove that the iterative algorithm is convergent
to an optimal solution? We will provide the answers for
those questions in the following sections. Specifically, we will
exploit the structure of the formulated problems to propose
two types of approximations, one based on GP programming



Algorithm 1 Generic Successive Convex Approximation Al-
gorithm

1: Initialize with a feasible solution (P[0],p[0],α[0]).
2: At the m-th iteration, form a convex subproblem by

approximating the nonconcave objective function and con-
straints of (P1), (P2) and (P3) with some concave function
around the previous point (P[m−1],p[m−1],α[m−1]).

3: Solve the resulting convex subproblem to obtain an opti-
mal solution (P[m],p[m],α[m]) at the m-th iteration.

4: Update the approximation parameters in Step 2 for the
next iteration.

5: Go back to Step 2 and repeat until (P,p,α) converges.

and the other DC programming. We will demonstrate that with
the given objective functions and constraints, it is possible to
apply both approximations to solve the formulated nonconvex
problems under the same SCA framework.

V. SOLUTIONS FOR AF RELAYING: SCA METHOD USING
GP

To implement Step 2 in Algorithm 1, in this section we will
make use of the single condensation approximation method
[28] to form a relaxed geometric program (GP), instead of
directly solving the nonconvex Problems (P1), (P2) and (P3).
A GP is expressed in the standard form as [33, p. 161]:

min
y

f0(y) (16a)

s.t. fi(y) ≤ 1, i = 1, . . . ,m (16b)
h`(y) = 1, ` = 1, . . . ,M (16c)

where fi(y), i = 0, . . . ,m are posynomials and h`(y), ` =
1, . . . ,M are monomials2. A GP in standard form is a nonlin-
ear and nonconvex optimization problem because posynomials
are not convex functions. However, with a logarithmic change
of the variables and multiplicative constants, one can easily
turn it into an equivalent nonlinear and convex optimization
problem (using the property that the log-sum-exp function is
convex) [28], [33].

2A monomial q̂(y) is defined as q̂(y) , cyâ1
1 yâ2

2 . . . yânn , where c > 0,
y = [y1, y2, . . . , yn]T ∈ Rn

++, and â = [â1, â2, . . . , ân]T ∈ Rn. A
posynomial is a nonnegative sum of monomials. [33]

A. GP-based Approximated Solution for Problem (P1)

First, we express the objective function in (12a) as:

max
P,p,α

N∑

i=1

1

2
log2(1 + γi) ≡ max

P,p,α
log2

N∏

i=1

(1 + γi) (17a)

≡ min
P,p,α

N∏

i=1

1

1 + γi
, (17b)

where (17b) follows from (17a) since log2(·) is monotonically
increasing function. Upon substituting γi in (9) to (17b) and
replacing 1 − αi by an auxiliary variable ti, it is shown that
Problem (P1) in (12) is equivalent to (18) [see the bottom of
this page] where t , [t1, · · · , tN ]T .

It can be seen that (18) is not yet in the form of (16)
because (18a) and (18d) are not posynomials. For notational
convenience, let us define:

ui(x) ,
N∑

j=1,j 6=i

φi,j1 Pjpiti +

N∑

j=1

(
φi,j2 Pjti + φi,j3 pj

)

+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpjti + 1, (19)

vi(x) ,
N∑

j=1

(
φi,j1 Pjpiti + φi,j2 Pjti + φi,j3 pj

)

+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpjti + 1, (20)

where x = [PT ,pT , tT ]T ∈ R3N
+ . The objective function in

(18a) can then be expressed as:

N∏

i=1

ui(x)

vi(x)
. (21)

Since ui(x) and vi(x) are both posynomials, ui(x)/vi(x) is
not necessarily a posynomial, confirming that (18a) is not a
posynomial.

To transform Problem (P1) into a GP of the form in (16), we
would like the objective function (21) to be a posynomial. To
this end, we propose to apply the single condensation method
[28] and approximate vi(x) with a monomial ṽi(x) as follows.
Given the value of x[m−1] at the (m−1)-th iteration, we apply

min
P,p,α,t

N∏

i=1

N∑

j=1,j 6=i

φi,j1 Pjpiti +

N∑

j=1

(
φi,j2 Pjti + φi,j3 pj

)
+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpjti + 1

N∑

j=1

(
φi,j1 Pjpiti + φi,j2 Pjti + φi,j3 pj

)
+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpjti + 1

(18a)

s.t. ti + αi ≤ 1 , ∀i ∈ N (18b)
ti ≥ 0 , ∀i ∈ N (18c)

0 ≤ pi

ηαi
∑N
j=1 Pj h̄j,i

≤ 1, ∀i ∈ N . (18d)

(12b), (12c),



the arithmetic-geometric mean inequality to lower bound vi(x)
at the m-th iteration by a monomial ṽi(x) as [28, Lem. 1]:

vi(x) ≥ ṽi(x)

,
N∏

j=1





(
vi(x

[m−1])Pjpiti

P
[m−1]
j p

[m−1]
i t

[m−1]
i

)φ
i,j
1 P

[m−1]
j

p
[m−1]
i

t
[m−1]
i

vi(x
[m−1])

×
(
vi(x

[m−1])Pjti

P
[m−1]
j t

[m−1]
i

)φ
i,j
2 P

[m−1]
j

t
[m−1]
i

vi(x
[m−1])

(22)

×
(
vi(x

[m−1])pj

p
[m−1]
j

)φ
i,j
3 p

[m−1]
j

vi(x
[m−1])




× vi(x[m−1])

1

vi(x
[m−1])

×
N∏

j=1,j 6=i

N∏

k=1

(
vi(x

[m−1])Pkpjti

P
[m−1]
k p

[m−1]
j t

[m−1]
i

)φ
i,j,k
4 P

[m−1]
k

p
[m−1]
j

t
[m−1]
i

vi(x
[m−1])

.

It is straightforward to verify that vi(x[m−1]) = ṽi(x
[m−1]).

In fact, ṽi(x) is the best local monomial approximation to
vi(x) near x[m−1] in the sense of the first-order Taylor
approximation. With (22), the objective function ui(x)/vi(x)
in (18a) is approximated by ui(x)/ṽi(x). The latter is a
posynomial because ṽi(x) is a monomial and the ratio of a
posynomial to a monomial is a posynomial. The upper bound∏N
i=1 (ui(x)/ṽi(x)) of (21) is also a posynomial because the

product of posynomials is a posynomial.
Next, we will approximate constraint (12d) by a posynomial

to fit into the GP framework (16). Again, we lower bound
posynomial ηαi

∑N
j=1 Pj h̄j,i by a monomial as [28, Lem. 1]:

ηαi

N∑

j=1

Pj h̄j,i

≥ ηαi
N∏

j=1

(
Pj
∑N
k=1 P

[m−1]
k h̄k,i

P
[m−1]
j

) P
[m−1]
j

h̄j,i∑N
k=1

P
[m−1]
k

h̄k,i

︸ ︷︷ ︸
,wi(αi,P)

. (23)

It is clear that the ratio pi/wi(αi,P) is now a posynomial.
Upon substituting (22) and (23) into (18), we can formulate
an approximated subproblem at the m-th iteration for Problem
(P1) as follows:

min
x,α

N∏

i=1

ui(x)

ṽi(x)
(24a)

s.t. 0 ≤ pi
wi(αi,P)

≤ 1 , ∀i ∈ N (24b)

(12b), (12c), (18b), (18c).

Comparing with (16), we see that (24) belongs to the class
of a geometric program, i.e., a convex optimization problem.
In (24a), since vi(x) ≥ ṽi(x) [see (22)], we are actually
minimizing the upper bound of the original objective function

in (18a). With (23), constraint (24b) is stricter than (12d) as:
pi

ηαi
∑N
j=1 Pj h̄j,i

≤ pi
wi(αi,P)

≤ 1. (25)

B. GP-based Approximated Solution for Problem (P2)

By substituting τi in (11) and carrying out simple algebraic
manipulations, constraint (14b) of Problem (P2) can be rewrit-
ten as:

e2τ ln 2

1 + γi
≤ 1, ∀i ∈ N ; and τ ≥ 0, (26)

where ln(·) denotes the natural logarithm. By introducing the
auxiliary variable t and with ui(x) and vi(x) defined in (19)-
(20), it is shown that Problem (P2) is equivalent to:

max
x,α,τ

τ (27a)

s.t.
ui(x)e2τ ln 2

vi(x)
≤ 1, ∀i ∈ N (27b)

τ ≥ 0, (27c)
(12b)− (12d), (18b), (18c).

As seen, (27) is not yet in the form of the standard GP
(16) because constraints (27b) and (12d) are not posynomials.
Using the similar approach in Sec. V-A, we can transform
(27b) and (12d) into posynomials by the approximations in
(22) and (23). The resulting subproblem at the m-th iteration
of Problem (P2) can be expressed in the standard GP form as:

max
x,α,τ

τ (28a)

s.t.
ui(x)e2τ ln 2

ṽi(x)
≤ 1, ∀i ∈ N (28b)

τ ≥ 0, (28c)
(12b), (12c), (18b), (18c), (24b),

where (28b) follows directly from (27b) by replacing vi(x)
with ṽi(x) [see in (22)], and (24b) is used in lieu of (12d).

C. GP-based Approximated Solution for Problem (P3)

By introducing an auxiliary variable t and applying mono-
mial approximation ṽi(x) [in (22)] for vi(x) [in (20)], we can
transform the nonconvex constraint (15b) in Problem (P3) into
a posynomial form as:

ui(x)e2τmin ln 2

ṽi(x)
≤ 1. (29)

Again, we use (24b) instead of (12d) and arrive at the
following GP, which is an approximated problem for Problem
(P3) at the m-th iteration:

min
x,α

N∑

i=1

Pi (30a)

s.t.
ui(x)e2τmin ln 2

ṽi(x)
≤ 1, ∀i ∈ N (30b)

(12b), (12c), (18b), (18c), (24b).



Algorithm 2 Proposed GP-based SCA Algorithm
1: Initialize m := 1.
2: Choose a feasible point

(
x[0] ,

(
P[0],p[0], t[0]

)
;α[0]

)
.

3: Compute the value of vi(x[0]), ∀i ∈ N according to (20).
4: repeat
5: Using vi(x

[m−1]), form the approximate monomial
ṽi(x) according to (22).

6: Using the interior-point method, solve one GP, i.e.,
(24) or (28) or (30) to find the m-th iteration approximated
solution

(
x[m] ,

(
P[m],p[m], t[m]

)
;α[m]

)
for Problem

(P1) or (P2) or (P3), respectively.
7: Compute the value of vi(x[m]), ∀i ∈ N according to

(20).
8: Set m := m+ 1.
9: until Convergence of (x,α) or no further improvement

in the objective value (24a) or (28a) or (30a)

D. Proposed GP-based SCA Algorithm for Joint Resource
Allocation

It should be noted that GP problems (24), (28) and (30)
are the convex approximations of the original Problems (P1),
(P2) and (P3), respectively. In Algorithm 2, we propose an
SCA algorithm in which a (convex) GP is optimally solved at
each iteration.

Proposition 1: Algorithm 2 generates a sequence of im-
proved feasible solutions that converge to a point (x?,α?)
satisfying the KKT conditions of the original problems (i.e.,
Problems (P1), (P2) and (P3)).

Proof: We will prove that Proposition 1 holds for the case
of GP (24) and its corresponding Problem (P1). The proofs for
GP (28) (hence Problem (P2)) and GP (30) (hence Problem
(P3)) are similar and will be omitted. From (23), we have
that pi

/(
ηαi

∑N
j=1 Pj h̄j,i

)
≤ pi/wi(αi,P). This means that

the optimal solution of the approximated problem (24) always
belongs to the feasible set of the original Problem (P1).

Next, since vi(x) ≥ ṽi(x), ∀x ∈ R3N
+ , it follows that:

N∏

i=1

ui(x
[m])

vi(x[m])
≤

N∏

i=1

ui(x
[m])

ṽi(x[m])
= min

x

N∏

i=1

ui(x)

ṽi(x)
≤

N∏

i=1

ui(x
[m−1])

ṽi(x[m−1])

=

N∏

i=1

ui(x
[m−1])

vi(x[m−1])
,

(31)

where the last equality holds because ṽi(x
[m−1]) =

vi(x
[m−1]). As the actual objective value of Problem (P1) is

non-increasing after every iteration, Algorithm 2 will eventu-
ally converge to a point (x?,α?).

Finally, it can be verified that

∇
(
ui(x)

vi(x)

) ∣∣∣∣
x=x[m−1]

= ∇
(
ui(x)

ṽi(x)

) ∣∣∣∣∣
x=x[m−1]

, (32)

and

∇
(

pi

ηαi
∑N
j=1 Pj h̄j,i

)∣∣∣∣
αi=α

[m−1]
i ;P=P[m−1]

= ∇
(

pi
wi(αi,P)

) ∣∣∣∣∣
αi=α

[m−1]
i ;P=P[m−1]

, (33)

where∇ denotes the gradient operator. The results in (32)-(33)
imply that the KKT conditions of the original Problem (P1)
will be satisfied after the series of approximations involving
GP (24) converges to the point (x?,α?). This completes the
proof.

VI. SOLUTIONS FOR AF RELAYING: SCA METHOD USING
DC PROGRAMMING

A. DC-based Approximated Solution for Problem (P1)

In the GP-based approach proposed in Sec. V, we have
eliminated the logarithm function in the objective function to
form a posynomial [see (17)] and solve the resulting (convex)
GP. In the current approach, we propose to keep the logarithm
function and rewrite the throughput expression as:

log2 (1 + γi)

= log2




N∑

j=1

(
φi,j1 Pjpi(1− αi) + φi,j2 Pj(1− αi) + φi,j3 pj

)

+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpj(1− αi) + 1


− log2

(
N∑

j=1,j 6=i

φi,j1

× Pjpi(1− αi) +

N∑

j=1

(
φi,j2 Pj(1− αi) + φi,j3 pj

)

+

N∑

j=1,j 6=i

N∑

k=1

φi,j,k4 Pkpj(1− αi) + 1

)

= v̄i(x)− ūi(x), (34)

where we define ūi(x) , log2(ui(x)) and v̄i(x) ,
log2(vi(x)) with ui(x) and vi(x) given in (19) and (20),
respectively. We also recall that x = [PT ,pT , tT ]T ∈ R3N

+ ,
and t = 1−α ∈ RN+ .

Using the following logarithmic change of variables:

P̄i , lnPi; p̄i , ln pi; t̄i , ln ti; φ̄i,j1 , lnφi,j1 ;

φ̄i,j2 , lnφi,j2 ; φ̄i,j3 , lnφi,j3 ; φ̄i,j,k4 , lnφi,j,k4 , (35)

for all i, j, k ∈ N , we can further write ūi(·) and v̄i(·) in



terms of the sums of exponentials in x̄:

ūi(x̄) = log2

(
N∑

j=1,j 6=i

eP̄j+p̄i+t̄i+φ̄
i,j
1

+

N∑

j=1

(
eP̄j+t̄i+φ̄

i,j
2 + ep̄j+φ̄

i,j
3

)

+

N∑

j=1,j 6=i

N∑

k=1

eP̄k+p̄j+t̄i+φ̄
i,j,k
4 + 1

)
, (36)

v̄i(x̄) = log2

(
N∑

j=1

(
eP̄j+p̄i+t̄i+φ̄

i,j
1 + eP̄j+t̄i+φ̄

i,j
2 + ep̄j+φ̄

i,j
3

)

+

N∑

j=1,j 6=i

N∑

k=1

eP̄k+p̄j+t̄i+φ̄
i,j,k
4 + 1

)
, (37)

where x̄ , [P̄T , p̄T , t̄T ]T , P̄ , [P̄1, . . . , P̄N ]T , p̄ ,
[p̄1, . . . , p̄N ]T , and t̄ , [t̄1, . . . , t̄N ]T . Since the log-sum-exp
function is convex [33], both ūi(x̄) and v̄i(x̄) are convex in
x̄. However, their difference v̄i(x̄)− ūi(x̄) = log2 (1 + γi) in
(34) is not necessarily concave.

Using the first-order Taylor series expansion around a given
point x̄[m−1], we propose to approximate v̄i(x̄) by an affine
function as follows [29]:

v̄i(x̄) ≈ v̄i
(
x̄[m−1]

)
+
(
∇v̄i

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)
,

(38)

where the `-th element of gradient ∇v̄i (x̄) is given by (39),
at the top of this page. With the affine approximation (38)
and the convex function ūi(x̄), it is clear that the throughput
can now be approximated by a concave function as:

log2 (1 + γi) ≈ v̄i
(
x̄[m−1]

)

+
(
∇v̄i

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)
− ūi(x̄).

(40)

By the variable change

ᾱi , lnαi, ∀i ∈ N (41)

and upon denoting ᾱ , [ᾱ1, . . . , ᾱN ]T , the nonconvex con-
straint (12d) of Problem (P1) can be rewritten as:

ep̄i ≤ ηeᾱi
N∑

j=1

eP̄j h̄j,i. (42)

Applying the arithmetic-geometric inequality, we have that:

N∑

j=1

eP̄j h̄j,i ≥
N∏

j=1

(
eP̄j h̄j,i

λ
[m−1]
j,i

)λ[m−1]
j,i

, (43)

where P[m−1] is a fixed point and

λ
[m−1]
j,i ,

eP̄
[m−1]
j h̄j,i

N∑

k=1

eP̄
[m−1]
j h̄k,i

. (44)

As such, (42) can be replaced by a stricter constraint:

ep̄i ≤ w̃i(ᾱi, P̄) , ηeᾱi
N∏

j=1

(
eP̄j h̄j,i

λ
[m−1]
j,i

)λ[m−1]
j,i

, (45)

which is equivalent to the following affine constraint:

p̄i − ᾱi −
N∑

j=1

λ
[m−1]
j,i P̄j − ci ≤ 0, (46)

where ci , ln η +
∑N
j=1 λ

[m−1]
j,i

(
ln h̄j,i − lnλ

[m−1]
j,i

)
is a

constant.

From (40) and (46), we now have the following convex
optimization problem which gives an approximated solution

∇(`)v̄i (x̄) =
1

vi (x̄) ln 2

×





eP̄`+p̄i+t̄i+φ̄
i,`
1 + eP̄`+t̄i+φ̄

i,`
2 +

N∑

j=1,j 6=i

eP̄`+p̄j+t̄i+φ̄
i,j,`
4 , if ` ∈ {1, . . . , N}

ep̄i+φ̄
i,i
3 +

N∑

j=1

eP̄j+p̄i+t̄i+φ̄
i,j
1 , if ` = N + i

ep̄`−N+φ̄i,`−N3 +

N∑

k=1

eP̄k+p̄`−N+t̄i+φ̄
i,`−N,k
4 , if ` ∈ {N + 1, . . . , 2N} \ {N + i}

N∑

j=1

(
eP̄j+p̄i+t̄i+φ̄

i,j
1 + eP̄j+t̄i+φ̄

i,j
2

)
+

N∑

j=1,j 6=i

N∑

k=1

eP̄k+p̄j+t̄i+φ̄
i,j,k
4 , if ` = 2N + i

0, otherwise.

(39)



to Problem (P1) at the m-th iteration:

max
x̄,ᾱ

N∑

i=1

v̄i

(
x̄[m−1]

)
+
(
∇v̄i

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)

− ūi(x̄) (47a)

s.t. et̄i + eᾱi ≤ 1, ∀i ∈ N (47b)
eᾱi ≤ 1, ∀i ∈ N (47c)

et̄i ≤ 1, ∀i ∈ N (47d)

Pmin ≤ eP̄i ≤ Pmax, ∀i ∈ N (47e)

p̄i − ᾱi −
N∑

j=1

λ
[m−1]
j,i P̄j − ci ≤ 0, (47f)

where x̄[m−1] is known from the (m− 1)-th iteration.

B. DC-based Approximated Solution for Problems (P2) and
(P3)

In this case, we apply the same logarithmic change of vari-
ables in (35) and (41). We also make use of the results in (40)
and (46) to show that Problem (P2) in (14) is approximated
by:

max
x̄,ᾱ,τ

τ (48a)

s.t. v̄i

(
x̄[m−1]

)
+
(
∇v̄i

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)

− ūi(x̄) ≥ 2τ ≥ 0, ∀i ∈ N (48b)
(47b)− (47f).

It is clear that (48) is a convex optimization problem for any
given point x̄[m−1].

By a similar approach, Problem (P3) in (15) can be approx-
imated by following convex problem:

min
x̄,ᾱ

N∑

i=1

Pi (49a)

s.t. v̄i

(
x̄[m−1]

)
+
(
∇v̄i

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)

− ūi(x̄) ≥ 2τmin, ∀i ∈ N (49b)
(47b)− (47f),

where x̄[m−1] is known from the (m− 1)-th iteration.

C. Proposed DC-based SCA Algorithm for Joint Resource
Allocation

In Algorithm 3, we propose an SCA algorithm in which a
convex problem based on the DC approximation is optimally
solved at each iteration.

Proposition 2: Algorithm 3 generates a sequence of im-
proved feasible solutions that converge to a point (x?;α?)
satisfying the KKT conditions of the original problems (i.e.,
Problems (P1), (P2) and (P3)).

Proof: We will prove that Proposition 2 holds for the
case of (47) and its corresponding Problem (P1). The proofs
for (48) (hence Problem (P2)) and (49) (hence Problem
(P3)) are similar and will be omitted. From (43), we have

Algorithm 3 Proposed DC-based SCA Algorithm
1: Initialize m := 1.
2: Choose a feasible point

(
x[0] ,

(
P[0],p[0], t[0]

)
;α[0]

)

and evaluate
(
x̄[0] ,

(
P̄[0], p̄[0], t̄[0]

)
; ᾱ[0]

)
using (35)

and (41).
3: Compute v̄i(x̄

[0]), ∇ log2 v̄i
(
x̄[0]
)

and λ
[0]
j,i, ∀i, j ∈ N

using (37), (39) and (44), respectively.
4: repeat
5: Given v̄i(x̄

[m−1]),∇ log2 v̄i
(
x̄[m−1]

)
and λ

[m−1]
j,i ,

form one convex problem, i.e., (47) or (48) or (49).
6: Using the interior-point method to solve (47)

or (48) or (49) for an approximated solution(
x̄[m] ,

(
P̄[m], p̄[m], t̄[m]

)
; ᾱ[m]

)
of Problem (P1)

or (P2) or (P3) at the m-th iteration, respectively.
7: Update v̄i(x̄[m]),∇ log2 v̄i

(
x̄[m]

)
and λ[m]

j,i , ∀i, j ∈ N
using (37), (39) and (44), respectively.

8: Set m := m+ 1.
9: until Convergence of (x̄, ᾱ) or no further improvement

in the objective value (47a) or (48a) or (49a)
10: Recover the optimal solution (x?;α?) from (x̄?; ᾱ?) via

(35) and (41).

that ep̄i
/(

ηeᾱi
∑N
j=1 e

P̄j h̄j,i

)
≤ ep̄i/w̃i(ᾱi, P̄). Imposing

a stricter constraint means that the optimal solution of the
approximated problem (47) always belongs to the feasible set
of the original Problem (P1).

Because the gradient of the convex function v̄i(x̄) is its
subgradient [33], it follows that ∀ x ∈ R3N

+ ,

v̄i(x̄) ≥ v̄i
(
x̄[m−1]

)
+
(
∇v̄i

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)
,

(50)

We now have the following relations for the approximated
objective value (47a) at the m-th iteration:

N∑

i=1

v̄i(x̄
[m])− ūi(x̄[m])

≥
N∑

i=1

v̄i

(
x̄[m−1]

)
+
(
∇v̄Ti

(
x̄[m−1]

))T (
x̄[m] − x̄[m−1]

)

− ūi(x̄[m])

= max
x̄

N∑

i=1

v̄i

(
x̄[m−1]

)
+
(
∇v̄Ti

(
x̄[m−1]

))T (
x̄− x̄[m−1]

)

− ūi(x̄)

≥
N∑

i=1

v̄i

(
x̄[m−1]

)
+
(
∇v̄Ti

(
x̄[m−1]

))T (
x̄[m−1] − x̄[m−1]

)

− ūi(x̄[m−1])

=

N∑

i=1

v̄i(x̄
[m−1])− ūi(x̄[m−1]) (51)

It is clear that the actual objective value of Problem (P1) is
non-decreasing after every iteration. Therefore, Algorithm 3
will eventually converge to a point (x?;α?) =

(
ex̄

?

; eᾱ
?)

.



Finally, it can be verified that

∇ (v̄i(x̄)− ūi(x̄))

∣∣∣∣
x̄=x̄[m−1]

= ∇
(
v̄i(x̄

[m−1])

+
(
∇v̄i(x̄[m−1])

)T
(x̄− x̄[m−1])− ūi(x̄)

) ∣∣∣∣
x̄=x̄[m−1]

(52)

∇
( ep̄i

ηeᾱi
∑N
j=1 e

P̄j h̄j,i

)∣∣∣∣∣ᾱi=ᾱ[m−1]
i

P̄=P̄[m−1]

= ∇
( ep̄i

w̃i(ᾱi, P̄)

)∣∣∣∣∣ᾱi=ᾱ[m−1]
i

P̄=P̄[m−1]

.

(53)

The results in (52)-(53) imply that the KKT conditions of
the original Problem (P1) will be satisfied after the series of
approximations involving convex problem (47) converges to
(x̄?; ᾱ?). This completes the proof.

Remark 1: As discussed in Secs. V and VI, we use the
SCA framework to propose two different methods, i.e., GP and
DC programming, to solve the three problems (P1), (P2), and
(P3). In this remark, we present the computational complexity
of the two solutions. We first use the big-O notation to find
the computational complexity of the convex subproblems in
an iteration [34]. To solve problem (P1), the complexity of
solving both convex subproblems (24) (in Algorithm 2) and
(47) (in Algorithm 3) is O

(
(4N)35N

)
because they both have

4N optimizing variables and 5N constraints. Multiplying this
factor by the number of iterations required for convergence, we
can obtain the overall computational complexity of Algorithms
2 and 3. This implies that the order of complexity for both
proposed algorithms is the same. Second, in order to compare
the exact computational time for the proposed algorithms, we
evaluate the CPU execution time [35]. For a fair comparison,
the MATLAB codes of the two algorithms are optimized to run
on the same computer equipped with Intel Core i7-2670QM,
2.20 GHz processor and 8 GB of RAM. We have observed
that the GP-based algorithm is slightly more efficient than DC
programming based algorithm, e.g., in solving Problem (P1),
Algorithms 2 and 3 on average require 29sec and 31.5sec,
respectively.

VII. SYSTEM MODEL AND PROPOSED SOLUTION FOR DF
RELAYING WITH VARIABLE TIMESLOT DURATIONS

In this section, we extend our work to decode-and-forward
(DF) relaying. With DF relaying, we have the flexibility to
vary the time duration of BS-to-relay and relay-to-user trans-
missions. In what follows, we will discuss the signal model,
sum-rate maximization problem with GP-based solution and
the corresponding complexity analysis for DF relaying.

A. Signal Model
Let εT define the fraction of the block time used for relay-

to-user transmissions. The remaining block time (1 − ε)T
is used for BS-to-relay energy harvesting and information
transmissions. With the signal at the input of information
transceiver at relay i in (3), the SINR at the receiver of relay
i is given by

γDF-R
i =

(1− αi)h̄i,iPi
(1− αi)

∑N
j=1,j 6=i h̄j,iPj + σ

(54)

The amount of energy harvested at DF relay i is then:

Ei = ηαi(1− ε)T
N∑

j=1

Pj h̄j,i, (55)

The maximum power available for transmission at DF relay i
is Ei

εT , which means that

pi ≤
Ei
εT

= ηαi
1− ε
ε

N∑

j=1

Pj h̄j,i. (56)

DF relay i will decode the signal from the BS i and forward
it to user i. Let x̄i be the decoded version of the signal xi sent
by the BS i. The received signal at user i in DF relaying is

yUi =
gi,i√(
dgi,i
)β
√
pix̄i +

N∑

j=1,j 6=i

gj,i√(
dgj,i
)β
√
pj x̄j + nai .

(57)

The SINR at the receiver of user i is thus

γDF-U
i =

ḡi,ipi∑N
j=1,j 6=i ḡj,ipj + σ

(58)

The achievable throughput in bps/Hz of cell i is then given by

τDF
i (P,p,α, ε) = ε log2(1 + γDF

i ), (59)

where γDF
i , min{γDF-R

i , γDF-U
i }.

B. Sum-Rate Maximization Problem and GP-based Solution
The problem of sum throughput maximization for DF

relaying is formulated as follows.

max
P,p,α,ε

ε

N∑

i=1

log2(1 + min{γDF-R
i , γDF-U

i }) (60a)

s.t. 0 ≤ αi ≤ 1 , ∀i ∈ N (60b)
Pmin ≤ Pi ≤ Pmax , ∀i ∈ N , (60c)

0 ≤ pi ≤ ηαi
1− ε
ε

N∑

j=1

Pj h̄j,i, ∀i ∈ N . (60d)

0 ≤ ε ≤ 1 . (60e)

We will now demonstrate that GP-based SCA approach can
be used to solve the nonconvex problem (60)3. To transform
problem (60) into a GP of the form in (16), we first fix ε to find
the optimal solution of other parameters and then optimize ε
later. By introducing a new auxiliary variable zi, problem (60)
is equivalently expressed as

max
P,p,α,z

ε̄

N∑

i=1

log2(1 + zi) (61a)

s.t. γDF-R
i ≥ zi , ∀i ∈ N (61b)

γDF-U
i ≥ zi , ∀i ∈ N (61c)

0 ≤ pi ≤ ηαi
1− ε̄
ε̄

N∑

j=1

Pj h̄j,i, ∀i ∈ N . (61d)

(60b), (60c),

3Note that the other problems, i.e., max-min throughput and sum-power
minimization, can be similarly formulated and solved for DF relaying. For
brevity, they are not presented here.



where z , [z1, . . . , zN ]T . The objective function in (61a) is
rewritten as

max
P,p,α,z

ε̄

N∑

i=1

log2(1 + zi) ≡ min
P,p,α,z

N∏

i=1

1

1 + zi
(62)

Next, we approximate the expression 1
1+zi

in (62) by a
posynomial to fit into the GP framework (16). To this end,
we lower bound 1 + zi by a monomial as [28, Lem. 1]:

1 + zi ≥ (1 + z
[m−1]
i )

1

1+z
[m−1]
i

(
(1 + z

[m−1]
i )zi

z
[m−1]
i

) z
[m−1]
i

1+z
[m−1]
i

.

(63)

By using (62) and (63) and ignoring the constant terms, we
further reduce (62) to

≡ min
P,p,α,z

N∏

i=1

z
−

z
[m−1]
i

1+z
[m−1]
i

i (64)

Upon substituting γDF-R
i and γDF-U

i from (54) and (58) into
(61), replacing 1 − αi by an auxiliary variable ti, applying
arithmetic-geometric mean inequality to lower bound 1 + zi
and

∑N
j=1 Pj h̄j,i in (62) and (60d) by monomials, we can

formulate an approximated subproblem at the m-th iteration
for problem (60) as follows:

min
P,p,α,t,z

N∏

i=1

z
−

z
[m−1]
i

1+z
[m−1]
i

i (65a)

s.t.
zi

(
ti
∑N
j=1,j 6=i h̄j,iPj + σ

)

tih̄i,iPi
≤ 1 , ∀i ∈ N

(65b)

zi

(∑N
j=1,j 6=i ḡj,ipj + σ

)

ḡi,ipi
≤ 1 , ∀i ∈ N (65c)

0 ≤ ε̄pi
(1− ε̄)wi(αi,P)

≤ 1 , ∀i ∈ N (65d)

0 ≤ ti ≤ 1 , ∀i ∈ N (65e)
αi + ti ≤ 1 , ∀i ∈ N (65f)
(60b), (60c),

where

wi(αi,P) , ηαi
∏N
j=1

(
Pj

∑N
k=1 P

[m−1]
k h̄k,i

P
[m−1]
j

) P
[m−1]
j

h̄j,i∑N
k=1

P
[m−1]
k

h̄k,i

is defined in (23). Compared with (16), problem (65) belongs
to the class of geometric programs, i.e., a convex optimization
problem. The convergence of the iterative algorithms that
solves convex subproblem (65) for DF relaying can be proved
using similar steps as stated in Proposition 1.

Using the optimized values of P, p, and α, we have to
optimize the time fraction ε in the original problem (60).
Although (60) is linear in ε, constraint (60d) is met with
equality at convergence. No further improvement of ε can
be achieved by solving (60) with the optimized values of P,
p, and α. Moreover, constraint (60d) is not monotonic in ε.
Hence, the only available option is to apply exhaustive search
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Fig. 3. Topology of the multicell network used in the numerical examples.

to find the optimal value of ε in (60) for given optimized values
of P, p, and α.

Remark 2: In the numerical results in Sec. VIII, we will
show that DF relaying with an optimized timeslot fraction
results in more than twice the throughput that is otherwise
achieved by AF relaying with equal timeslot durations. How-
ever, this performance improvement is at the expense of a
much higher computational complexity due to the required
exhaustive search.

VIII. NUMERICAL RESULTS

Fig. 3 shows an example multicell network consisting
of four 150m-by-150m cells. In each cell, the geographical
distance between the servicing BS and its corresponding
relay and that between the relay and the cell-edge user is
both 35

√
2 ≈ 49.5m, i.e., the relay in each cell is located

midway between the BS and the cell-edge user. At the relays,
we set the energy harvesting efficiency to η = 0.54. To
model the wireless channels we assume independently and
identically distributed block fading. Channel coefficients hi,j
and gj̄,k, ∀i, j, j̄, k and i 6= j, are circularly symmetric
complex Gaussian random variables with zero mean and unit
variance. The channel coefficients between the servicing BS
and its corresponding relay, i.e., hi,i ∀ i, are modeled by
Rician fading with the Rician factor of 10 dB. We assume
that the randomly-generated values of hi,j and gj,k remain
unchanged during each time block where the radio resource
allocation process takes place. To model large scale fading,
we assume that the path loss exponent is β = 3. This results
in a maximum path loss of 51 dB between the BS and the
associated relay in each cell. In order to activate RF energy
harvesting with η = 0.5 and assuming that the input power
at the energy harvesting relay has to be greater than −25
dBm [8], [36]5, we set Pmin = −25 + 51 = 26 dBm. Using

4The value of η is typically in the range of 0.4− 0.6 for practical energy
harvesting circuits [8].

5Energy conversion efficiency of around 50% has been reported in the ISM
band (900 MHz, 2.4 GHz) with an RF input power of −25 dBm and using
13 nm CMOS technology [8], [36].
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Fig. 4. Convergence of Algorithms 2 and 3 in Problem (P1) for AF relaying.
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Fig. 5. Convergence of Algorithms 2 and 3 in Problem (P2) for AF relaying.

a channel bandwidth of 20kHz and assuming a noise power
density of −174dBm/Hz, the total noise power is calculated
as σ = −131dBm [37]. We initialize the proposed Algorithms
2 and 3 with P [0]

i = ςPmax; α
[0]
i = ς; t

[0]
i = 1− α[0]

i ; p
[0]
i =

ςηα
[0]
i

∑N
j=1 P

[0]
j h̄j,i, ∀i ∈ N , where ς is a real number taken

between 0 and 1. To solve each convex problem in Algorithms
2 and 3, we use CVX, a package for specifying and solving
convex programs [38], [39].

A. Convergence of the Proposed Algorithms for AF Relaying

In this subsection, we present numerical results to demon-
strate the convergence behavior of the proposed algorithms
under different parameter settings. Regarding Problem (P1),
Fig. 4 plots the convergence of the sum throughput

∑N
i=1 τi

by the proposed solutions. In our simulations, each iteration
corresponds to solving of a GP (24) in Algorithm 2 or a DC
program (47) in Algorithm 3 by CVX. It is clear from Fig. 4
that both algorithms exhibit similar convergence behaviors. In

our example, they converge within 15 iterations and achieve
the same optimal throughput. As observed from Fig. 4(a), the
sum rate is increased by 28% if we allow a higher BS transmit
power budget of 46dBm instead of 40dBm. In an interference-
limited multicell multiuser network setting, increasing the
transmit powers may trigger the ‘power racing’ phenomenon
among the users, which in turn adversely affect the total
achieved throughput. Our numerical results, on the other
hand, confirm that the proposed algorithms effectively manage
the strong intercell interference and maximize the network
performance. For a fixed power budget Pmax = 46dBm, Fig.
4(b) demonstrates that the final performance of our algorithms
is insensitive to the initial points, further suggesting that the
solution corresponds to the actual global optimum in our
example [27]–[29].

We demonstrate the performance of our developed algo-
rithms in Figs. 5 and 6 for Problems (P2) and (P3), respec-
tively, which plot the convergence of the minimum throughput
τ and total BS transmit power

∑N
i=1 Pi, respectively. Again,
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Fig. 7. Performance comparison of the proposed joint optimization algorithms and the separate optimization approaches.

the proposed algorithms converge quickly to the corresponding
optimal values. Different from the results for Problem (P1),
increasing Pmax from 40dBm to 46dBm in Fig. 5(a) marginally
improves the achieved minimum throughput. This signifies
the challenge of enhancing the performance of the most
disadvantaged user, who is typically located in the cell-edge
areas and suffers from the strong intercell interference. In this
situation, simply increasing the total allowable transmit power
at the BSs would not be helpful. On the other hand, Fig.
6(a) verifies that the total required transmit power drops to
the minimum value possible, i.e., N × Pmin = 32 dBm for
different values of minimum throughput. Similar to Fig. 4(b),
Figs. 5(b) and 6(b) show that initializing the algorithms with
different values of ς , again, does not affect the final solutions.

As seen from Figs. 4, 5 and 6, both Algorithms 2 and 3
achieve the same optimal values. However, it is impractical to
compare their performance with a globally optimal solution.
There is no global optimization approach available in the lit-
erature to solve our highly nonconvex optimization problems.
A direct exhaustive search would incur a prohibitive computa-
tional complexity. It is noteworthy that the works of [27]–[29]
have shown that the SCA approach often empirically achieves
the global optimality in most practical network applications.

Also since we assume perfect knowledge of CSI at the BSs,
the achieved performance corresponds to the theoretical bound
that can be obtained. The actual performance with channel
estimation errors is out of the scope of this work—a potential
future research direction.

B. Importance of the Proposed Joint Optimization Algorithms
for AF Relaying

Fig. 7 demonstrates the advantages of jointly optimizing
(P,p,α) as in Algorithms 2 and 3 over optimizing those
three parameters individually. In the latter approach, we only
optimize one parameter (i.e., P or p or α) while fixing the re-
maining two parameters where applicable as: Pi = Pmax; pi =
ηαi

∑N
j=1 Pj ; αi = 0.5, ∀i ∈ N . Note that for the total power

minimization problem (P3), P is optimized while p and α
must be fixed. Also in the individual optimization approach,
we only present the results of GP-based solutions because both
GP and DC approaches achieve similar outcomes.

The results presented in Fig. 7 have been averaged over
1, 000 independent simulation runs and we set ς = 0.5 and
Pmax = 46dBm. As expected, the proposed joint optimization
algorithms outperform the sole optimization approach in all
cases. The significant gain is observed in Fig. 7(a), where
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case, i.e., ε = ε̄ = 0.5 and the optimized ε case.

the total throughput is increased by 94%. Regarding Problem
(P2), Fig. 7(b) shows that the minimum throughput in Problem
(P2) is increased by 10% with the proposed Algorithms 2
and 3. The performance improvement is less pronounced here.
This is because since max-min fairness problem (P2) deals
with the most disadvantaged cell-edge user, it is more difficult
to support the QoS requirements of such a user compared
to only maximizing the overall network performance. Finally,
with the minimum throughput τmin = 0.12 required by the
most disadvantaged user in Problem (P3), Fig. 7(c) shows that
the proposed algorithms reduce the total BS transmit power
by 12 dB i.e., almost 40 times over optimizing P alone.

C. Comparison of AF and DF Relaying

Fig. 8 plots the average sum throughput against different
values of Pmax = {35, 37, 39, 41, 43, 45} dBm obtained by the
proposed joint optimization algorithm, while solving Problem
(P1) for AF and DF relaying. The results for DF relaying
include both the equal timeslot case, i.e., ε = ε̄ = 0.5 and the
optimized ε case. With the equal timeslot assumption for BS-
to-relay and relay-to-user transmissions, i.e., ε = ε̄ = 0.5, DF
relaying increase the throughput by 33% at Pmax = 35 dBm.
With an optimized value of ε, the throughput enhancement can
be as high as 170% at Pmax = 35dBm.

IX. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we have considered the challenging problems
for jointly optimizing the BS transmit powers, the relay power
splitting factors and the relay transmit powers in a multicell
network. It is assumed here that the relay (operating in either
AF mode or DF mode) is equipped with a PS receiver
architecture that can split the received power in order to
scavenge RF energy and to process the information signal from
its respective BS. To resolve the highly nonconvex problem
formulations, we have proposed SCA algorithms based on

geometric programming and DC programming that offer sum-
throughput maximization, max-min throughput optimization
and sum-power minimization. We have proven that the devised
algorithms converge to the solutions that satisfy the KKT
conditions of the original nonconvex problems. Illustrative
examples have demonstrated the clear advantages of our
developed solutions.

In case of multiple relays in a cell, two additional problems
can be considered for future research (i) in the first timeslot,
beamforming design at the BS toward multiple relays, (ii) in
the second time slot, relay selection to choose which relay
to forward the BS message to which users and over which
channel. While these problems are outside the scope of this
paper, our proposed solution for the case of one relay and one
user per cell can serve as a first building block toward a joint
design in more general cases.
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