97 research outputs found
Projection of two biphoton qutrits onto a maximally entangled state
Bell state measurements, in which two quantum bits are projected onto a
maximally entangled state, are an essential component of quantum information
science. We propose and experimentally demonstrate the projection of two
quantum systems with three states (qutrits) onto a generalized maximally
entangled state. Each qutrit is represented by the polarization of a pair of
indistinguishable photons - a biphoton. The projection is a joint measurement
on both biphotons using standard linear optics elements. This demonstration
enables the realization of quantum information protocols with qutrits, such as
teleportation and entanglement swapping.Comment: 4 pages, 3 figures, published versio
The influence of defoliation and nitrogen on the regrowth of Rhodes grass (Chloris gayana Kunth). 2. Etiolated growth and non-structural carbohydrate, total-N and nitrate-N content.
Data are given on the chemical composition of Rhodes grass cv. Common grown in a heated glasshouse [see HbA 42, 1910]. Plants given high N (8.29 meq/100 g soil) contained about 30% less carbohydrate in the stubble and roots than those given low N (1.43 meq/100g). The carbohydrate content of plants cut every 28 days was generally lower than that of plants cut every 14 days. Amounts of etiolated growth in darkness after cutting were positively correlated with the carbohydrate level in the roots and in the stubble. The percentage of tillers exhibiting regrowth in darkness increased linearly up to about 60% with increase in the amount of etiolated growth. Contents of total N in roots and in stubble were almost double at the high rate of N. Amounts of nitrate as a proportion of total N were about 12% in low-N plants and up to 47% in high-N plants. The nitrate contents of shoots, stubble and roots were negatively correlated with the carbohydrate levels in each of these tissues. The overall difference in carbohydrate level between shoots, stubble and roots was relatively small. It was concluded that Rhodes grass had a limited capacity to accumulate reserve material when grown under conditions favouring rapid growth. (Abstract retrieved from CAB Abstracts by CABIβs permission
The influence of defoliation and nitrogen on the regrowth of Rhodes grass (Chloris gayana Kunth). 1. Dry matter production and tillering.
In pot experiments Rhodes grass (cv. "Common" and "Katambora") was fertilized with 1.43 and 8.29 meq N/100 g soil over a period of 56 days and was cut every 14 or 28 days. Cutting at 28 days considerably increased total shoot weight. Root weight per pot of low-N plants was 31 and 23% higher than that of high-N plants at 14- and 28-day cutting intervals, respectively. N application generally increased the average number of harvest tillers, but individual tillers regrew a fewer number of times than those receiving low N. (Abstract retrieved from CAB Abstracts by CABIβs permission
Regrowth potential of shoot and of roots of Rhodes grass (Chloris gayana Kunth) after defoliation.
In field and pot trials the effect of different lengths of pre-cutting periods and of cutting intervals on regrowth of shoot and of root were studied in Rhodes grass cv. Katambora. The initial regrowth of the sward after a long (28 days) pre-cutting period was slower than after a short (7 days) pre-cutting period. The reduction of the residual LAI following the extension of the pre-cutting period was associated with reduction in the number of tillers capable of regrowth after defoliation. Root wt. decreased drastically following cutting when the initial root wt. was high (long pre-cutting period), but little when the initial root wt. was small (short pre-cutting period). The decrease in root wt. lasted c. 1 wk after which it increased at a more or less constant rate proportional to the increase of shoot wt. irrespective of the length of the pre-cutting period. The lack of the capability of tillers to regrow after cutting was closely related with developmental stage of tillers. Since tillers of subtropical and tropical grasses have a tendency for early stem elongation, it was concluded that the relatively small number of sites available for regrowth in these grasses is the major deterrent for quick shoot growth of the sward after defoliation. (Abstract retrieved from CAB Abstracts by CABIβs permission
Effects of electromagnetic radiation on intact bovine lens epithelium in culture conditions
Π¦Π΅Π»Ρ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π΅ΠΈΠΎΠ½Π·ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π½Π° Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊ Π³Π»Π°Π·Π°, Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΡΠ»ΡΡΡΡΡ ΡΠΊΠ°Π½ΠΈ Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ° Π³Π»Π°Π·Π°.
ΠΠ΅ΡΠΎΠ΄Ρ: Π₯ΡΡΡΡΠ°Π»ΠΈΠΊΠΈ Π±ΡΡΡΠ΅Π³ΠΎ Π³Π»Π°Π·Π° Π±ΡΠ»ΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Ρ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 10 Π΄Π½Π΅ΠΉ. ΠΠ·ΡΡΠ΅Π½ΠΎ 59 Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠΎΠ². ΠΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠΈ Π±ΡΠ»ΠΈ ΠΎΠ±Π»ΡΡΠ΅Π½Ρ 1.1 GHz, 2.22mW Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 192 ΡΠΈΠΊΠ»ΠΎΠ² ΠΏΠΎ 50 ΠΌΠΈΠ½ΡΡ Ρ ΠΏΠ°ΡΠ·ΠΎΠΉ 10 ΠΌΠΈΠ½ΡΡ. ΠΠ°ΡΠ΅ΠΌ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ
ΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ².
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: ΠΠΊΡΠΏΠΎΠ·ΠΈΡΠΈΡ 2.22mW ΠΈ 1.1GHz ΠΏΠΎΠ²ΡΠ΅Π΄ΠΈΠ»Π° Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊ Π³Π»Π°Π·Π°. ΠΡΡΠ΅Π²ΠΎΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΎΡΡ Π² ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΡΠ»ΠΎΠ΅ Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ° Π³Π»Π°Π·Π°, ΠΈ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ².
ΠΡΠ²ΠΎΠ΄Ρ: ΠΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊ Π³Π»Π°Π·Π° ΠΠΊΡΠΏΠΎΠ·ΠΈΡΠΈΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΌΠΈ Π²ΡΡΠ΅ ΡΡΠΎΠ²Π½ΡΠΌΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π½Π° ΡΠΏΠΈΡΠ΅Π»ΠΈΠΉ Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ° Π³Π»Π°Π·Π°, ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ².Purpose: To investigate the effects of nonionizing electromagnetic radiation on the eye lens using a lens organ culture system.
Methods: Bovine lenses were incubated in organ culture conditions for 10 days. 59 lenses were used in this study. Treated lenses were exposed to 1.1GHz, 2.22mW for 192 cycles of 50 minutes irradiation followed by 10 minutes pause. At the end of the culture period control and treated lenses were taken for enzyme analysis.
Results: Exposure to 2.22mW at 1.1GHz caused damage to the lens. The radiation damage appeared at the lens epithelial layer accompanied by activity changes of lens epithelial enzymes.
Conclusions: Electromagnetic radiation has a clear impact on the eye lens. Exposure above specific energy levels affects lens epithelium as demonstrated by changes in epithelial enzyme activities
Protection of a lens of an eye against the simulated diabetic cataract
ΠΠ°ΡΠ°ΡΠ°ΠΊΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ΅Π½Ρ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈ Π΄ΠΈΠ°Π±Π΅ΡΠ΅. ΠΡ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π»ΠΈ Π±ΡΡΠΈΠ΅ Π»ΠΈΠ½Π·Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π³Π»ΡΠΊΠΎΠ·Ρ (450 ΠΌΠ³.%) Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΊΡΠ»ΡΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ
Π½Π΅Π΄Π΅Π»Ρ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ Π² Π»ΠΈΠ½Π·Π΅ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ Π·Π°ΡΠΈΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠ°ΠΌΠΈ N Π°ΡΠ΅ΡΠΈΠ» L ΡΠΈΡΡΠ΅ΠΈΠ½ΠΎΠΌ (NAC) ΠΈ ΡΠΈΠ½ΠΊΠΎΠ²ΡΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΌ desferrioxamine (DFO), ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΠΌ Ρ
Π΅Π»Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ ΠΆΠ΅Π»Π΅Π·Π°. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΎΡΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ Π»ΠΈΠ½Π· ΠΈ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΠΏΠΈΡΠ΅Π»ΠΈΡ Ρ Π΄ΠΈΡ
Π»ΠΎΡΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅ΠΈΠ½ΠΎΠΌ (DCF), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² 2D Π³Π΅Π»Ρ
ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΡΠΎΡΠΈΠ»Π΅ Π±Π΅Π»ΠΊΠΎΠ² Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ°. ΠΠ°Π±Π»ΡΠ΄Π°Π»ΠΈΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ Π³Π»ΡΠΊΠΎΠ·Ρ Π² ΡΠΎΠΊΡΡΠ½ΠΎΠΌ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ Π»ΠΈΠ½Π·Ρ, ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠΈ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ. NAC Π Zn DFO ΠΏΠΎΡΡΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π·Π°ΡΠΈΡΠ°Π»ΠΈ Π»ΠΈΠ½Π·Ρ; DFO ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π» ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°ΡΡΠΈΡΠ½ΡΡ Π·Π°ΡΠΈΡΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ, ΡΡΠΎ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΡ ΠΌΠΎΠ³ΡΡ Π·Π°ΡΠΈΡΠ°ΡΡΡ Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠ΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΡΡΠΎΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ Π³Π»ΡΠΊΠΎΠ·Ρ. ΠΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ NAC ΠΈ ZnDFO Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°Π»Π° Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ.ΠΠ°ΡΠ°ΡΠ°ΠΊΡΠ° Ρ Π΄ΡΠΆΠ΅ ΠΏΠΎΡΠΈΡΠ΅Π½ΠΈΠΌ ΡΡΠΊΠ»Π°Π΄Π½Π΅Π½Π½ΡΠΌ ΠΏΡΠΈ Π΄ΡΠ°Π±Π΅ΡΡ. ΠΠΈ ΠΏΡΠ΄Π΄Π°Π»ΠΈ ΠΊΡΠΈΡΡΠ°Π»ΠΈΠΊ ΠΎΠΊΠ° Π±ΠΈΠΊΠ° Π΄ΡΡ Π²ΠΈΡΠΎΠΊΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΡΡ Π³Π»ΡΠΊΠΎΠ·ΠΈ (450 ΠΌΠ³ %) Π² ΡΠΌΠΎΠ²Π°Ρ
ΠΊΡΠ»ΡΡΡΡΠΈ ΠΏΡΠΎΡΡΠ³ΠΎΠΌ Π΄Π²ΠΎΡ
ΡΠΈΠΆΠ½ΡΠ² Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π»ΠΈ ΠΏΠΎΡΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π² Π»ΡΠ½Π·Ρ Ρ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΠΉ Π·Π°Ρ
ΠΈΡΡ ΡΠΏΠ΅ΡΡΠ°Π»ΡΠ½ΠΈΠΌΠΈ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠ°ΠΌΠΈ N Π°ΡΠ΅ΡΠΈΠ» L ΡΠΈΡΡΠ΅ΠΈΠ½ΠΎΠΌ (NAC) Ρ ΡΠΈΠ½ΠΊΠΎΠ²ΠΈΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΌ desferrioxamine (DFO), ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ Ρ
Π΅Π»Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ Π·Π°Π»ΡΠ·Π°. ΠΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π»Π°ΡΡ ΠΎΠΏΡΠΈΡΠ½Π° ΡΠΊΡΡΡΡ Π»ΡΠ½Π· Ρ ΠΎΠΊΠΈΡΠ»Π΅Π½Π½Ρ Π΅ΠΏΡΡΠ΅Π»ΡΡ Π· Π΄ΠΈΡ
Π»ΠΎΡΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅ΡΠ½ΠΎΠΌ (DCF), Π° ΡΠ°ΠΊΠΎΠΆ ΠΎΡΡΠ½ΡΠ²Π°Π»ΠΈΡΡ Π·ΠΌΡΠ½ΠΈ Π² 2D Π³Π΅Π»Ρ Π΅Π»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅ΡΠΈΡΠ½ΠΎΠΌΡ ΠΏΡΠΎΡΡΠ»Ρ Π±ΡΠ»ΠΊΡΠ² ΠΊΡΠΈΡΡΠ°Π»ΠΈΠΊΠ°. Π‘ΠΏΠΎΡΡΠ΅ΡΡΠ³Π°Π»ΠΈΡΡ Π·ΠΌΡΠ½ΠΈ ΠΏΡΠΈ Π²ΠΈΡΠΎΠΊΠΎΠΌΡ Π²ΠΌΡΡΡΡ Π³Π»ΡΠΊΠΎΠ·ΠΈ Ρ ΡΠΎΠΊΡΡΠ½ΡΠΉ Π²ΡΠ΄ΡΡΠ°Π½Ρ Π»ΡΠ½Π·ΠΈ, ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ ΠΎΠΊΠΈΡΠ»Π΅Π½Π½Ρ. NAC Π Zn DFO ΠΌΠ°ΠΉΠΆΠ΅ ΠΏΠΎΠ²Π½ΡΡΡΡ Π·Π°Ρ
ΠΈΡΠ°Π»ΠΈ Π»ΡΠ½Π·ΠΈ; DFO ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π² ΡΡΠ»ΡΠΊΠΈ ΡΠ°ΡΡΠΊΠΎΠ²ΠΈΠΉ Π·Π°Ρ
ΠΈΡΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΡΠ²Π°Π»ΠΈ, ΡΠΎ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠΈ ΠΌΠΎΠΆΡΡΡ Π·Π°ΡΠΈΡΠ°ΡΡΡ ΠΊΡΠΈΡΡΠ°Π»ΠΈΠΊ Π²ΡΠ΄ ΡΡΠΊΠΎΠ΄ΠΆΡΠ²Π°Π»ΡΠ½ΠΎΡ Π΄ΡΡ Π²ΠΈΡΠΎΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΡΠΉ Π³Π»ΡΠΊΠΎΠ·ΠΈ. ΠΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ NAC Ρ ZNDFO Π΄ΡΡΠ»Π° Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΠ΅
The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion
We describe the full characterization of the biaxial nonlinear crystal BiB3O6
(BiBO) as a polarization entangled photon source using non-collinear type-II
parametric down-conversion. We consider the relevant parameters for crystal
design, such as cutting angles, polarization of the photons, effective
nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect
of the pump laser bandwidth. Experimental results showing entanglement
generation with high rates and a comparison to the well investigated
beta-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion
crystal of a polarization entangled photon source from BBO to BiBO enhances the
generation rate as if the pump power was increased by more than three times.
Such an improvement is currently required for the generation of multiphoton
entangled states.Comment: 15 pages, 13 figures, published versio
High oxygen load causes damage to lens epithelium which is reduced by antioxidants
Π¦Π΅Π»Ρ: ΠΠ·ΡΡΠΈΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π½Π° Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ Π·Π°ΡΠΈΡΠ½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΡΠΈΠ½ΠΊ-Π΄Π΅Π·ΡΠ΅ΡΡΠΈΠΎΠΊΡΠ°ΠΌΠΈΠ½Π° (Zn-DFO).
ΠΠ΅ΡΠΎΠ΄Ρ: Π₯ΡΡΡΡΠ°Π»ΠΈΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ· Π³Π»Π°Π·Π° Π±ΡΠΊΠ°, Ρ
ΡΠ°Π½ΠΈΠ»ΠΈ Π½Π° ΠΊΡΠ»ΡΡΡΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΈΠ· ΡΠΊΠ°Π½Π΅ΠΉ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½Π°. Π₯ΡΡΡΡΠ°Π»ΠΈΠΊ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°Π»ΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ Π»ΠΈΠ±ΠΎ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ, Π»ΠΈΠ±ΠΎ Π±Π΅Π· ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° Zn-DFO (20 Π¦ΠΠ). ΠΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ° ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΡΠ΅ΡΠ΅Π· ΡΠ΅ΠΌΡ Π΄Π½Π΅ΠΉ ΠΎΡ Π½Π°ΡΠ°Π»Π° Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΊΡΠ»ΡΡΡΡΡ. ΠΠΎ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°, Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊ ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π»ΠΈ ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π΅Π³ΠΎ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ·.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π Ρ
ΡΡΡΡΠ°Π»ΠΈΠΊΠ°Ρ
, ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π½ΡΡΡΡ
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π±ΠΎΠ»ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ½Π·ΠΈΠΌΠΎΠ² ΡΠΏΠΈΡΠ΅Π»ΠΈΡ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½Π°. ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ½Π·ΠΈΠΌΠΎΠ² ΠΈΠ·ΡΡΠ°Π»ΠΈ ΡΠΈΠΊΠ» ΠΡΠ΅Π±ΡΠ°, ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π° ΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΠ’Π€ ΠΏΠΎΠ³ΡΠ°Π½ΠΈΡΠ½ΡΡ
ΠΌΠ΅ΠΌΠ±ΡΠ°Π½. ΠΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ Zn-DFO ΠΊ ΠΊΡΠ»ΡΡΡΡΠ΅ ΠΊΠ»Π΅ΡΠΎΠΊ Π΄ΠΎ Π½Π°ΡΠ°Π»Π° Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ΠΎΠΌ, ΡΠ»ΠΈΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π»ΠΎ Π±ΠΎΠ»ΡΡΡΡ ΡΠ°ΡΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ.
ΠΡΠ²ΠΎΠ΄Ρ: ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ³ΡΡ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Zn-DFO ΠΊΠ°ΠΊ Π·Π°ΡΠΈΡΠ½ΠΎΠ³ΠΎ Π°Π³Π΅Π½ΡΠ° ΠΏΡΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄-ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΠ°ΡΠ°ΡΠ°ΠΊΡ.Purpose: To investigate the mechanisms involved in the effects of oxygen on the eye lens and the possible protective effects of Zinc-desferrioxamine (Zn-DFO) using lens organ culture system.
Methods: Bovine lenses, kept in an organ culture system, were exposed to high oxygen load in the presence or absence of Zn-DFO complex (20 MM). Lens optical quality was assessed throughout the 7 days of the culture period. At the end of the culture, lenses were taken for morphological and enzyme analysis.
Results: Decreased lenticular optical quality and changes in lens epithelium enzymatic activities were observed in lenses exposed to high oxygen concentration. The enzymes analyzed were from Krebs cycle, glycolysis pathway and membrane bound ATPase. Addition of Zn-DFO to the culture before the exposure to oxygen eliminated most of the oxygen-induced damage.
126)
Conclusions: The present results may indicate a possible role of Zn-DFO as a protective agent against oxygen-induced cataract formation
- β¦