1,445 research outputs found

    The Gemini NICI Planet-Finding Campaign: The Offset Ring of HR 4796 A

    Get PDF
    We present J, H, CH_4 short (1.578 micron), CH_4 long (1.652 micron) and K_s-band images of the dust ring around the 10 Myr old star HR 4796 A obtained using the Near Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1 meter Telescope. Our images clearly show for the first time the position of the star relative to its circumstellar ring thanks to NICI's translucent focal plane occulting mask. We employ a Bayesian Markov Chain Monte Carlo method to constrain the offset vector between the two. The resulting probability distribution shows that the ring center is offset from the star by 16.7+/-1.3 milliarcseconds along a position angle of 26+/-3 degrees, along the PA of the ring, 26.47+/-0.04 degrees. We find that the size of this offset is not large enough to explain the brightness asymmetry of the ring. The ring is measured to have mostly red reflectivity across the JHK_s filters, which seems to indicate micron-sized grains. Just like Neptune's 3:2 and 2:1 mean-motion resonances delineate the inner and outer edges of the classical Kuiper Belt, we find that the radial extent of the HR 4796 A and Fomalhaut rings could correspond to the 3:2 and 2:1 mean-motion resonances of hypothetical planets at 54.7 AU and 97.7 AU in the two systems, respectively. A planet orbiting HR 4796 A at 54.7 AU would have to be less massive than 1.6 Mjup so as not to widen the ring too much by stirring.Comment: Accepted to A&A for publication on April 23, 2014 (15 pages, 9 figures, 4 tables

    Genomic analysis of advanced breast cancer tumors from talazoparib-treated gBRCA1/2mut carriers in the ABRAZO study

    Get PDF
    Breast cancer; Pharmacogenomics; Tumour biomarkersCáncer de mama; Farmacogenómica; Biomarcadores tumoralesCàncer de mama; Farmacogenòmica; Biomarcadors tumoralsThese analyses explore the impact of homologous recombination repair gene mutations, including BRCA1/2 mutations and homologous recombination deficiency (HRD), on the efficacy of the poly(ADP-ribose) polymerase (PARP) inhibitor talazoparib in the open-label, two-cohort, Phase 2 ABRAZO trial in germline BRCA1/2-mutation carriers. In the evaluable intent-to-treat population (N = 60), 58 (97%) patients harbor ≥1 BRCA1/2 mutation(s) in tumor sequencing, with 95% (53/56) concordance between germline and tumor mutations, and 85% (40/47) of evaluable patients have BRCA locus loss of heterozygosity indicating HRD. The most prevalent non-BRCA tumor mutations are TP53 in patients with BRCA1 mutations and PIK3CA in patients with BRCA2 mutations. BRCA1- or BRCA2-mutated tumors show comparable clinical benefit within cohorts. While low patient numbers preclude correlations between HRD and efficacy, germline BRCA1/2 mutation detection from tumor-only sequencing shows high sensitivity and non-BRCA genetic/genomic events do not appear to influence talazoparib sensitivity in the ABRAZO trial.In Manchester, this trial was undertaken in/supported by the NIHR Manchester Clinical Research Facility at The Christie Hospital NHS Foundation Trust. The ABRAZO study was sponsored by Medivation, which was acquired by Pfizer in September 2016 (grant number not applicable). The authors wish to thank Masaki Mihaila and the Pfizer clinical programming team for the ABRAZO correlative analyses. Medical writing support was provided by Dominic James, PhD, and Hannah Logan, PhD, of CMC AFFINITY, a division of IPG Health Medical Communications, and was funded by Pfizer

    NICI: combining coronagraphy, ADI, and SDI

    Full text link
    The Near-Infrared Coronagraphic Imager (NICI) is a high-contrast AO imager at the Gemini South telescope. The camera includes a coronagraphic mask and dual channel imaging for Spectral Differential Imaging (SDI). The instrument can also be used in a fixed Cassegrain Rotator mode for Angular Differential Imaging (ADI). While coronagraphy, SDI, and ADI have been applied before in direct imaging searches for exoplanets. NICI represents the first time that these 3 techniques can be combined. We present preliminary NICI commissioning data using these techniques and show that combining SDI and ADI results in significant gains.Comment: Proc. SPIE, Vol. 7014, 70141Z (2008

    The Gemini NICI Planet-Finding Campaign

    Full text link
    Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a high-performance curvature adaptive optics system with a simultaneous dual-channel coronagraphic imager. Combined with state-of-the-art observing methods and data processing, NICI typically achieves ~2 magnitudes better contrast compared to previous ground-based or space-based programs, at separations inside of ~2 arcsec. In preparation for the Campaign, we carried out efforts to identify previously unrecognized young stars, to rigorously construct our observing strategy, and to optimize the combination of angular and spectral differential imaging. The Planet-Finding Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of 300 stars. We describe the Campaign's goals, design, implementation, performance, and preliminary results. The NICI Campaign represents the largest and most sensitive imaging survey to date for massive (~1 Mjup) planets around other stars. Upon completion, the Campaign will establish the best measurements to date on the properties of young gas-giant planets at ~5-10 AU separations. Finally, Campaign discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with next-generation planet-finding instruments.Comment: Proceedings of the SPIE, vol 7736 (Advances in Adaptive Optics, San Diego, CA, June 2010 meeting), in pres

    The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets Around Debris Disk Stars

    Full text link
    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.5" and 14.1 mag at 1" separation. Follow-up observations of the 66 candidates with projected separation < 500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known Beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that 5MJup planet beyond 80 AU, and 3MJup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly-imaged planets as d^2N/dMda ~ m^alpha a^beta, where m is planet mass and a is orbital semi-major axis (with a maximum value of amax). We find that beta 1.7. Likewise, we find that beta < -0.8 and/or amax < 200 AU. If we ignore the Beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that 3MJup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation > 40 AU and planet masses > 3 MJup do not carve the central holes in these disks.Comment: Accepted to ApJ on June 24, 2013. 67 pages, 17 figures, 12 table

    Randomized double-blind trial of pregabalin versus placebo in conjunction with palliative radiotherapy for cancer-induced bone pain

    Get PDF
    Purpose Cancer-induced bone pain (CIBP) affects one third of patients with cancer. Radiotherapy remains the gold-standard treatment; however, laboratory and clinical work suggest that pregabalin may be useful in treating CIBP. The aim of this study was to examine pregabalin in patients with CIBP receiving radiotherapy. Patients and Methods A multicenter, double-blind randomized trial of pregabalin versus placebo was conducted. Eligible patients were age ≥ 18 years, had radiologically proven bone metastases, were scheduled to receive radiotherapy, and had pain scores ≥ 4 of 10 (on 0-to-10 numeric rating scale). Before radiotherapy, baseline assessments were completed, followed by random assignment. Doses of pregabalin and placebo were increased over 4 weeks. The primary end point was treatment response, defined as a reduction of ≥ 2 points in worst pain by week 4, accompanied by a stable or reduced opioid dose, compared with baseline. Secondary end points assessed average pain, interference of pain with activity, breakthrough pain, mood, quality of life, and adverse events. Results A total of 233 patients were randomly assigned: 117 to placebo and 116 to pregabalin. The most common cancers were prostate (n = 88; 38%), breast (n = 77; 33%), and lung (n = 42; 18%). In the pregabalin arm, 45 patients (38.8%) achieved the primary end point, compared with 47 (40.2%) in the placebo arm (adjusted odds ratio, 1.07; 95% CI, 0.63 to 1.81; P = .816). There were no statistically significant differences in average pain, pain interference, or quality of life between arms. There were differences in mood (P = .031) and breakthrough pain duration (P = .037) between arms. Outcomes were compared at 4 weeks. Conclusion Our findings do not support the role of pregabalin in patients with CIBP receiving radiotherapy. The role of pregabalin in CIBP with a clinical neuropathic pain component is unknown
    • …
    corecore