3 research outputs found

    Temporal Data Management - An Overview

    Get PDF
    Despite the ubiquity of temporal data and considerable research on the effective and efficient processing of such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in the processing of temporal data that captures multiple states of reality. The SQL:2011 standard incorporates some temporal support, and commercial DBMSs have started to offer temporal functionality in a step-by-step manner, such as the representation of temporal intervals, temporal primary and foreign keys, and the support for so-called time-travel queries that enable access to past states. This tutorial gives an overview of state-of-the-art research results and technologies for storing, managing, and processing temporal data in relational database management systems. Following an introduction that offers a historical perspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by existing systems. The tutorial ends by covering a recently proposed framework that provides comprehensive support for processing temporal data and that has been implemented in PostgreSQL

    Querying and Learning in Probabilistic Databases

    No full text
    Abstract. Probabilistic Databases (PDBs) lie at the expressive inter-section of databases, first-order logic, and probability theory. PDBs em-ploy logical deduction rules to process Select-Project-Join (SPJ) queries, which form the basis for a variety of declarative query languages such as Datalog, Relational Algebra, and SQL. They employ logical consistency constraints to resolve data inconsistencies, and they represent query an-swers via logical lineage formulas (aka.“data provenance”) to trace the dependencies between these answers and the input tuples that led to their derivation. While the literature on PDBs dates back to more than 25 years of research, only fairly recently the key role of lineage for es-tablishing a closed and complete representation model of relational op-erations over this kind of probabilistic data was discovered. Although PDBs benefit from their efficient and scalable database infrastructures for data storage and indexing, they couple the data computation with probabilistic inference, the latter of which remains a #P-hard problem also in the context of PDBs. In this chapter, we provide a review on the key concepts of PDBs with a particular focus on our own recent research results related to this field. We highlight a number of ongoing research challenges related to PDBs, and we keep referring to an information extraction (IE) scenario as a running application to manage uncertain and temporal facts obtained from IE techniques directly inside a PDB setting
    corecore