

Aalborg Universitet

Temporal Data Management—An Overview

Böhlen, Michael Hanspeter; Dignös, Anton; Gamper, Johann; Jensen, Christian Søndergaard

Published in:
Business Intelligence and Big Data - 7th European Summer School, eBISS 2017, Tutorial Lectures

DOI (link to publication from Publisher):
10.1007/978-3-319-96655-7_3

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Böhlen, M. H., Dignös, A., Gamper, J., & Jensen, C. S. (2018). Temporal Data Management—An Overview. In
E. Zimanyi (Ed.), Business Intelligence and Big Data - 7th European Summer School, eBISS 2017, Tutorial
Lectures (Vol. 324, pp. 51-83). Springer. Lecture Notes in Business Information Processing
https://doi.org/10.1007/978-3-319-96655-7_3

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 24, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/304611988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-96655-7_3
https://vbn.aau.dk/en/publications/9d3ac9f1-8730-41c0-8adf-efe334e80277
https://doi.org/10.1007/978-3-319-96655-7_3

Temporal Data Management – An Overview

Michael H. Böhlen1, Anton Dignös2,
Johann Gamper2, and Christian S. Jensen3

1 University of Zurich, Switzerland
2 Free University of Bozen-Bolzano, Italy

3 Aalborg University, Denmark

Abstract. Despite the ubiquity of temporal data and considerable re-
search on the effective and efficient processing of such data, database
systems largely remain designed for processing the current state of some
modeled reality. More recently, we have seen an increasing interest in the
processing of temporal data that captures multiple states of reality. The
SQL:2011 standard incorporates some temporal support, and commer-
cial DBMSs have started to offer temporal functionality in a step-by-step
manner, such as the representation of temporal intervals, temporal pri-
mary and foreign keys, and the support for so-called time-travel queries
that enable access to past states.
This tutorial gives an overview of state-of-the-art research results and
technologies for storing, managing, and processing temporal data in re-
lational database management systems. Following an introduction that
offers a historical perspective, we provide an overview of basic tempo-
ral database concepts. Then we survey the state-of-the-art in temporal
database research, followed by a coverage of the support for temporal
data in the current SQL standard and the extent to which the tem-
poral aspects of the standard are supported by existing systems. The
tutorial ends by covering a recently proposed framework that provides
comprehensive support for processing temporal data and that has been
implemented in PostgreSQL.

1 Introduction

The capture and processing of temporal data in database management systems
(DBMS) has been an active research area since databases were invented. In the
temporal database research history, four overlapping phases can be distinguished.
First, the concept development phase (1956–1985) concentrated on the study of
multiple kinds of time and temporal aspects of data and on temporal conceptual
modeling. The following phase was dedicated to the design of query languages
(1978–1994), including relational and object-oriented temporal query languages.
Then the focus shifted to implementation aspects (1988–present), emphasis being
on storage structures, algorithms for specific operators, and temporal indices.
Finally, the consolidation phase (1993–present) produced a consensus glossary of
temporal database concepts [47], a query language test suite [36], and TSQL2 [82]
as an effort towards standardization of a temporal extension to SQL.

The final authenticated version is available online at: http:// dx.doi.org/10.1007/978-3-319-96655-7_3

A number of events and activities involving the temporal database commu-
nity have impacted the evolution of temporal database research significantly.
The 1987 IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in In-
formation Systems [79] covered a wide range of topics, including requirements for
temporal data models and information systems, temporal query languages, ver-
sioning, implementation techniques, temporal logic, constraints, and relations to
natural language. The 1993 ARPA/NSF International Workshop on an Infras-
tructure for Temporal Databases [81] aimed at consolidating different temporal
data models and query languages. In the same year, the collection Temporal
Databases: Theory, Design, and Implementation [88] was published, which de-
scribes primarily a number of data models and query languages. Another in-
fluential book, The TSQL2 Temporal Query Language [82], was published in
1995. By leveraging many of the concepts that were proposed in previous re-
search, TSQL2 aimed to be a consensus data model and query language. At the
same time, a project with the ambition of creating a new part of the SQL stan-
dard dedicated to the support of temporal data started. Several proposals were
submitted, e.g., [84], but were eventually not successful. The proposals proved
controversial, and they were unable to achieve support from major database
vendors. The last notable event dedicated to temporal database research was
the 1997 Dagstuhl Seminar on Temporal Databases [37] that had as its aim to
discuss future directions for temporal database management both in research as
well as in system development.

The last several years have seen a renewed interest in temporal database
management in both academia and industry. This interest is driven in part by
the needs of new and emerging applications, such as versioning of web docu-
ments [33], social network analysis and communication networks [65, 77], man-
agement of normative texts [46], air traffic monitoring and patient care [7], video
surveillance [72], sales analysis [71], financial market analysis [45], and data ware-
housing and analytics [83], to name a few. These and other applications produce
huge amounts of temporal data, including time series and streaming data, which
are special forms of temporal data. It has been recognized [5] that analyses of
historical data can reveal valuable information that cannot be found in only the
current snapshot.

This tutorial provides an overview of temporal data management concepts
and techniques, covering both research results and commercial database man-
agement systems. In Section 2, we summarize the most important concepts de-
veloped in temporal database research. In Section 3, we provide a brief overview
of the state-of-the-art in temporal database research. Section 4 describes the
most important temporal features of the SQL:2011 standard that introduces
temporal support into SQL. In Section 5, we provide a brief overview of the
support for the temporal SQL standard in commercial database management
systems. Finally, in Section 6, we describe a recent framework that provides a
comprehensive and native solution for processing temporal queries in relational
database management systems.

2 Basic Concepts of Temporal Databases

In this section, we briefly summarize important concepts that have been devel-
oped in temporal database research.

2.1 Time Domain and Structure

The time domain (or ontology) specifies the basic building blocks of time [66].
It is generally modeled as a set of time instants (or points) with an imposed
partial order, e.g., (N, <). Additional axioms impose more structure on the time
domain, yielding more refined time domains. Linear time advances from past
to future in a step-by-step fashion. This model of time is mainly used in the
database area. In contrast, AI applications often used a branching time model,
which has a tree-like structure, allowing for possible futures. Time is linear from
the past to now, where it divides into several time lines; along any future path,
additional branches may exist. This yields a tree-like structure rooted at now.
Now marks the current time point and is constantly moving forward [32]. The
time domain can be bounded in the past and/or in the future, i.e., a first and/or
last time instant exists; otherwise, it is called unbounded.

The time domain can be dense, discrete, or continuous. In a discrete time
domain, time instants are non-decomposable units of time with a positive dura-
tion, called chronons [31]. A chronon is the smallest duration of time that can be
represented. This time model is isomorphic to the natural numbers. In contrast,
in a dense time domain, between any two instants of time, there exists another
instant; this model is isomorphic to the rational numbers. Finally, continuous
time is dense and does not allow “gaps” between consecutive time instants. Time
instants are durationless. The continuous time model is isomorphic to the real
numbers.

While humans perceive time as continuous, a discrete linear time model is
generally used in temporal databases for several practical reasons, e.g., measures
of time are generally reported in terms of chronons, natural language references
are compatible with chronons, and any practical implementation needs a discrete
encoding of time. A limitation of a discrete time model is, for example, the
inability to represent continuous phenomena [40].

A time granularity is a partitioning of the time domain into a finite set of
segments, called granules, providing a particular discrete image of a (possibly
continuous) timeline [9, 10]. The main aim of granularities is to support user-
friendly representations of time. For instance, birth dates are typically measured
at the granularity of days, business appointments at the granularity of hours, and
train schedules at the granularity of minutes. Multiple granularities are needed
in many real-world applications.

2.2 Temporal Data Models

A data model is defined as M = (DS,QL), where DS is a set of data structures
and QL is a language for querying instances of the data structures. For instance,

the relational data model is composed of relations and, e.g., SQL. Many exten-
sions of the relational data model to support time have been proposed in past
research, e.g., IXSQL [63], TSQL2 [82], ATSQL [16] and SQL/TP [93]. When
designing a temporal data model [49], several aspects have to be considered, such
as

– different time dimensions, or temporal aspects,
– different timestamp types, and
– different forms of timestamping.

Time Dimensions. Different temporal aspects of data are of interest. Valid
time and transaction time are the two aspects that have attracted the most
attention by far in database research; other temporal aspects include publication
time, efficacy time, assertion time, etc.

Valid time [54] is the time when a fact was/is/will be true in the modeled
reality, e.g., John was hired from October 1, 2014 to May 31, 2016. Valid time
captures the time-varying states of the modeled reality and is provided by the
application or user. All facts have a valid time by definition, and it exists inde-
pendently of whether the fact is recorded in a database or not. Valid time can
be bounded or unbounded.

Transaction time [53] is the time when a fact is current/present in the
database as stored data, e.g., the fact “John was hired from October 1, 2014 to
May 31, 2016” was stored in the database on October 5, 2014, and was deleted
on March 31, 2015. Transaction time captures the time-varying states of the
database, and it is supplied automatically by the DBMS. Transaction time has
a duration from the insertion of a fact to its deletion, with multiple insertions
and deletions being possible for the same fact. Deletions of facts are purely log-
ical: the fact remains in the database, but ceases to be part of the database’s
current state. Transaction time is always bounded on both ends. It starts when
the database is created (nothing was stored before), and it does not extend past
now (it is not known which facts are current in the future). Transaction time
is the basis for supporting accountability and traceability requirements, e.g., in
financial, medical, or legal applications.

A data model can support none, one, two, or more time dimensions. A so-
called snapshot data model provides no support for time dimensions and records
only a single snapshot of the modeled reality. A valid time data model sup-
ports only valid time, a transaction time data model only transaction time. A
bitemporal data model supports both valid time and transaction time.

Timestamp Types. A timestamp is a time value that is associated with an
attribute value (attribute (value) timestamping) or a tuple (tuple timestamping)
in a database and captures some temporal aspect, e.g., valid time or transaction
time. It can be represented as one or more attributes or columns of a relation.
Three different types of timestamps [50,51,62] have received particular attention:

– time points,

– time intervals, and
– temporal elements.

To illustrate different types of timestamps, we consider a car rental company,
where customers, identified by a CustID, rent cars, identified by a CarID. Assume
the following rentals during May 1997:

– On 3rd of May, customer Sue rents car C1 for three days.
– On 5th of May, customer Tim rents car C2 for 3 days.
– From 9th to 12th of May, customer Tim rents car C1.
– From 19th to 20th of May, and again from 21st to 22nd of May, customer

Tim rents car C2.

These rentals are stored in a relation Rental, which is illustrated in Figure 1.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 time

Sue, C1

Tim, C2 Tim, C1 Tim, C2

Tim, C2

Fig. 1. Relation Rental.

Time Points. In a point-based data model, tuples or attribute values are times-
tamped with a time point (or instant) (cf. Figure 2(a)). This is the most basic
and simple data model. Timestamps are atomic values and can be compared
easily with =, 6=, <, >,≥,≤. Multiple tuples are used if a fact is valid at sev-
eral time points, e.g., four tuples for the two consecutive rentals from time 19 to
time 22. Additional attributes are required to restore the original relation. In the
Rental relation in Figure 2(a), the SeqNo attribute is used to group tuples that
constitute a rental. Without this attribute, it would be impossible to restore the
two consecutive 2-day rentals, as they could be restored, e.g., as a single 4-day
rental or four 1-day rentals. The point-based model is simple and provides an
abstract view of a database, which makes it popular for theoretical studies, but
inappropriate for physical implementation.

Time Intervals. In an interval-based data model, each tuple or attribute is times-
tamped with a time interval, or period (cf. Figure 2(b)). Timestamps can be
compared using Allen’s 13 basic interval relationships (before, meets, during,
etc.) [4], which is more convenient than comparing the endpoints of the inter-
vals. Multiple tuples are used if a fact is valid during disjoint time intervals. The
SeqNo attribute is not needed to distinguish among different tuples. This is the
most popular model from an implementation perspective. Interval timestamps
are not closed under set operations, e.g., subtracting the interval [5, 7] from the
interval [1, 9] gives the set of intervals {[1, 4], [8, 9]}, not a single interval.

Rental
SeqNo CustID CarID T

1 Sue C1 3
1 Sue C1 4
1 Sue C1 5
2 Tim C2 5
2 Tim C2 6
2 Tim C2 7
3 Tim C1 9
3 Tim C1 10
3 Tim C1 11
3 Tim C1 12
4 Tim C2 19
4 Tim C2 20
5 Tim C2 21
5 Tim C2 22
(a) Point-based model

Rental
CustID CarID T

Sue C1 [3,5]
Tim C2 [5,7]
Tim C1 [9,12]
Tim C2 [19,20]
Tim C2 [21,22]

(b) Strong interval-based model

Rental
CustID CarID T

Sue C1 [3,5]
Tim C2 [5,7]
Tim C1 [9,12]
Tim C2 [19,22]

(c) Weak interval-based model

Fig. 2. Point- and interval-based data models for Rental relation.

Temporal Elements. In data models with temporal elements, each tuple or at-
tribute is timestamped with a finite union of intervals, called a temporal ele-
ment [38, 39] (cf. Figure 3). The full history of a fact is stored in a single tuple.
For instance, the second tuple represents the fact that Tim rents car C1 from
time 5 to 7 and from time 19 to 22. Temporal elements support only a point-
based semantics, hence an additional attribute would be necessary to distinguish
between the two consecutive 2-day rentals (see also discussion below).

Rental
CustID CarID T

Sue C1 [3,5]
Tim C2 [5,7] ∪ [19,22]
Tim C1 [9,12]

Fig. 3. Data model with temporal elements.

Point-based and Interval-based Semantics. From a semantic viewpoint,
two different types of models can be distinguished: models with point-based se-
mantics and models with interval-based semantics. This distinction is orthogonal
to the choice of the timestamp (i.e., time points, time intervals, or temporal el-
ements) and focuses on the meaning of the timestamps. For instance, relation
Rental in Figure 2(a) uses time points as timestamps, but adopts an interval-
based semantics, as information on the rental periods is preserved by using the
additional SeqNo attribute. Similarly, a relation that uses interval timestamps

may adopt either a point-based semantics or an interval-based semantics. The
corresponding models are referred to as, respectively, weak interval-based model
and strong interval-based model – see Figures 2(b) and 2(c).

In the weak interval-based data model, intervals are only used as a compact
and convenient representation of contiguous sets of time points. For instance,
although (syntactically) different, the two relations in Figures 2(b) and 2(c)
are considered equivalent under point-based semantics since they are snapshot
equivalent [48], i.e., they contain the same snapshots. More formally, let r and
s be two temporal relations, ΩT be the time domain, and τt(r) be the timeslice
operator [52] with t being a time instant. The relations r and s are snapshot
equivalent if and only if

∀t ∈ ΩT : τt(r) ≡ τt(s)

For the weak interval-based model, an important operation is coalescing [2, 19,
100]. Coalescing is the process of merging adjacent and overlapping interval
timestamped tuples with identical nontemporal attribute values into tuples with
maximal time intervals. For instance, the relation in Figures 2(c) is the result of
coalescing the relation in Figure 2(b). Without an additional SeqNo attribute,
the two consecutive 2-day rentals disappear: they are merged into a single 4-day
rental.

In the strong interval-based data model, intervals are atomic units that carry
meaning (and not just sets of time points). Thus, strong interval-based data
models are more expressive. They can distinguish between a 4-day rental and two
consecutive 2-day rentals without requiring an additional attribute. The relation
in Figure 2(b) is the appropriate representation of the Rental relation in our
example since two 2-day rentals and one 4-day rental might impose different fees.

Timestamping. Timestamping denotes the association of a data element in a
relation with a time value. In the above examples, we used tuple timestamping,
which associates each tuple with a time value such as a time point, a time
interval, or a temporal element.

In attribute (value) timestamping, each attribute value in a relation is asso-
ciated with a timestamp (cf. Figure 4). Relations are grouped by an attribute,
and all information about that attribute (or real-world object) is captured in
a single tuple. Information about other objects is spread across several tuples.
In Figure 4(a), all information about a customer is in one tuple, while the in-
formation about cars is spread across several tuples. A single tuple may record
multiple facts. For instance, the second tuple records four different rentals involv-
ing customer Tim and the cars C1 and C2. Different groupings of the information
into tuples are possible. Figure 4(b) shows the same relation grouped on CarID.
The two relations are snapshot-equivalent. Data models using attribute value
timestamping are non-first-normal-form data models.

Rental
SeqNo CustID CarID
[3,5] 1 [3,5] Sue [3,5] C1
[5,7] 2 [5,7] ∪ [9,12] ∪ [19,22] Tim [5,7] ∪ [19,22] C2
[9,12] 3 [9,12] C1
[19,20] 4
[21,22] 5

(a) Grouped by CustID

Rental
SeqNo CustID CarID
[3,5] 1 [3,5] Sue [3,5] ∪ [9,12] C1
[9,12] 3 [9,12] Tim
[5,7] 2 [5,7] ∪ [19,22] Tim [5,7] ∪ [19,22] C2
[19,20] 4
[21,22] 5

(b) Grouped by CarID

Fig. 4. Attribute value timestamping.

2.3 Query Language Semantics

The querying capabilities of temporal DBMSs can be partitioned into three
modes [16,83,85]: nonsequenced, current, and sequenced semantics.

The nonsequenced semantics [18] is time agnostic, that is, the DBMS does not
enforce any specific meaning on the timestamps, and applications must explic-
itly specify how to process the temporal information. The support for the nonse-
quenced semantics in DBMSs is limited to extending SQL with new data types,
predicates, and functions. Predicates such as OVERLAPS, BEFORE, and CONTAINS
are part of the SQL:2011 standard. Another approach to specify temporal rela-
tionships are to use the operators of temporal logic, which target the reasoning
across different database states [23]. Nonsequenced semantics is the most flexi-
ble and expressive semantics since applications handle timestamps like all other
attributes without any implicit meaning being enforced.

The current semantics [6,17] performs query processing on the database snap-
shot at the current time and can be realized by restricting the data to the current
time. Current semantics is present in the SQL:2011 standard, where standard
SQL queries over transaction time tables (in SQL:2011 called system-versioned
tables) are evaluated on the current snapshot [58]. As a simple extension to
current semantics, so-called time travel queries allow to specify any snapshot of
interest. The integration of current semantics into a database engine is usually
done with the help of selection operations.

The sequenced semantics [15,44] of a temporal query is defined by viewing a
temporal database as a sequence of snapshot databases and evaluating the query
at each of these snapshots. This concept is known as snapshot reducibility [63,87].
More formally, let r1, . . . , rn be temporal relations, ψT be an n-ary temporal
operator, ψ be the corresponding nontemporal operator, ΩT be the time domain,

and τt(r) be the timeslice operator [52] with t being a time instant. Operator ψT
is snapshot reducible to ψ if and only if

∀t ∈ ΩT : τt(ψT (r1, . . . , rn)) ≡ ψ(τt(r1), . . . , τt(rn))

Snapshot reducibility provides a minimum requirement for sequenced semantics
by constraining the result of a temporal query to be consistent with the snapshots
that are obtained by computing the corresponding nontemporal query on each
snapshot of the temporal database. This provides a clear semantics for theoretical
studies, but a practical implementation needs additional constraints.

First, snapshot reducibility does not constrain the coalescing of consecutive
tuples with identical nontemporal attribute values. For instance, the two rela-
tions in Figures 2(b) and 2(c) are snapshot equivalent, yet they store different
information. Change preservation [27, 30] is a way to determine the time inter-
vals of the result tuples, and thus control the coalescing of tuples. A new time
interval is created when the argument tuples that contribute to a result tuple
change (i.e., have different lineage or provenance) [20,24], yielding maximal time
intervals for the result tuples over which the argument relations are constant.

Second, snapshot reducibility does not allow temporal operators to reference
the timestamps of the argument relations since the intervals are removed by the
timeslice operator. For example, computing the average duration of projects at
each point is not possible. This problem can be tackled by propagating the orig-
inal timestamp as additional attribute to relational algebra operators, yielding
a concept known as extended snapshot reducibility [15].

Finally, sometimes attribute values need to be changed when the timestamp
intervals of tuples change. For instance, if a project budget is 100, 000 for a
period of two years, then the corresponding budget for one year should be 50, 000
(assuming a uniform distribution). This concept is called scaling of attribute
values [11,28].

3 State-of-the-Art

In this section, we discuss the state-of-the-art in temporal database research,
focusing on data models, SQL-based query languages, and evaluation algorithms
for query processing.

3.1 Data Models and SQL-based Query Languages

To make the formulation of temporal queries more convenient, various temporal
query languages [14,88] have been proposed. The earliest and simplest approach
to add temporal support to SQL-based query languages was to introduce new
data types with associated predicates and functions that were strongly influenced
by Allen’s interval relationships [4]. While this approach facilitates the formu-
lation of some temporal queries, it falls short in the extent to which it makes
it easier to formulate temporal queries. Therefore, new constructs were added

to SQL with the goal of expressing temporal queries more easily. A representa-
tive query language following this approach is TSQL2 [82], which uses so-called
syntactic defaults to facilitate query formulation. Challenges with this type of
approach include to be “complete” in enabling easy formulation of temporal
queries and to avoid unintentional interactions between the extensions.

A more systematic approach was adopted in IXSQL [25, 63], which normal-
izes interval timestamped tuples for query processing and works as follows: (i) a
function unfold transforms an interval timestamped relation into a point times-
tamped relation by splitting each tuple into a set of point timestamped tuples;
(ii) the corresponding nontemporal operation is applied to the normalized rela-
tion; (iii) a function fold collapses value-equivalent tuples over consecutive time
points into interval timestamped tuples over maximal time intervals. The ap-
proach is conceptually simple, but timestamp normalization does not respect
lineage, and no efficient implementation exists.

SQL/TP [93, 94] is an approach that is based on a point-based data model:
a temporal relation is modeled as a sequence of nontemporal relations (or snap-
shots). To evaluate a temporal query, the corresponding nontemporal query is
evaluated at each snapshot. For an efficient evaluation, an interval encoding of
point timestamped relations was proposed together with a normalization func-
tion. The normalization splits overlapping value-equivalent input tuples into tu-
ples with equal or disjoint timestamps, on which the corresponding nontemporal
SQL statements are executed. SQL/TP considers neither lineage nor extended
snapshot reducibility, which are not relevant for point timestamped relations.
Moreover, the normalization function is not applicable to joins, outer joins, and
anti joins.

Agesen at al. [1] extend normalization to bitemporal relations by means of
a split operator. This operator splits input tuples that are value-equivalent over
nontemporal attributes into tuples over smaller, yet maximal timestamps such
that the new timestamps are either equal or disjoint. The split operator supports
temporal aggregation and difference in now-relative bitemporal databases.

ATSQL [16] offers a systematic way to construct temporal SQL queries from
nontemporal SQL queries. The main idea is to first formulate the nontempo-
ral query and then prepend to this query a so-called statement modifier that
specifies the intended semantics of the query evaluation, such as sequenced or
nonsequenced semantics.

The temporal alignment approach [27,30] is a solution for computing tempo-
ral queries over interval timestamped relations using sequenced semantics. The
key idea is to first adjust the timestamps of the input tuples and then to execute
the corresponding nontemporal operator to obtain the intended result. While the
adjustment of timestamps is similar to the normalization in SQL/TP [93], the
temporal alignment approach is comprehensive and offers snapshot reducibility,
extended snapshot reducibility, and attribute value scaling for all operators of
a relational algebra. This approach provides a native database implementation
for temporal query languages with sequenced semantics, such as ATSQL. More
details are provided in Section 6.

The scaling of attribute values in response to the adjustment of interval
timestamps has received little attention. Böhlen et al. [11] propose three differ-
ent attribute characteristics: constant attributes that never change value during
query processing, malleable attributes that require adjustment of the value when
the timestamp changes, and atomic attributes that become undefined (invalid)
when the timestamp changes. For malleable attributes, an adjustment function
is proposed. Terenziani and Snodgrass [92] distinguish between atelic facts that
are valid for each point in time and telic facts that are only valid for one specific
interval. That work focuses on the semantics of facts recorded in a database and
proposes a three-sorted relational model (atelic, telic, nontemporal). Dignös et
al. [28] show that scaling of attributes values is possible during query processing.

The focus of Dyreson at al. [34, 35] is to provide a uniform framework for
the evaluation of queries under different temporal semantics, including the two
extremes of sequenced and nonsequenced semantics. Additional semantics can be
realized in this framework, such as context, periodic, and preceding semantics.
The framework uses lineage to track tuples through operations. The work is
primarily at the conceptual level, the main goals being to unify and reconcile
different temporal semantics.

3.2 Query Processing Algorithms

In terms of query processing, various query algorithms for selected operators
have been studied, primarily for temporal aggregations (e.g., [13, 57, 67, 96, 98])
and temporal joins (e.g., [42,86,99]) over interval timestamped relations, which
are arguably the most important and expensive operations.

Processing Temporal Aggregations. Aggregate functions enable the sum-
marization of large volumes of data, and they were introduced in early relational
DBMSs such as System R and INGRES. Various forms of temporal aggregation
have been proposed since then. They differ in how the data is grouped along
the time dimension [41]. In instantaneous temporal aggregation, an aggregate
function is conceptually computed at each time point, followed by a subsequent
coalescing step to merge contiguous tuples with the same aggregate value into
a single interval timestamped tuple. Moving-window temporal aggregation, also
termed cumulative temporal aggregation, works similarly, except that an aggre-
gate at a time point is computed over all tuples that occur within a user-specified
window. Finally, in span temporal aggregation, the aggregates are computed over
sets of tuples that overlap with fixed time intervals specified by the user.

The earliest proposal aimed at the efficient processing of instantaneous tem-
poral aggregates is by Tuma [95]. Following Tuma’s work, research focused on the
development of efficient main-memory algorithms for the evaluation of instanta-
neous temporal aggregates as the most important form of temporal aggregation.
Key works in this direction include the aggregation tree algorithm [57] and the
balanced tree algorithm [68].

With the diffusion of data warehouses and OLAP, disk-based index structures
for incremental computation and maintenance of temporal aggregates were in-
vestigated. Notable works include the SB-tree by Yang and Widom [96], which
was extended to the MVSB-tree by Zhang et al. [98] to include nontemporal
range predicates. The high memory requirements of the MVSB-tree were ad-
dressed by Tao et al. [89], proposing two approximate solutions for temporal
aggregation.

Vega Lopez et al. [61] formalized temporal aggregation in a unified frame-
work that enables the comparison of the different forms of temporal aggregation
based on various mechanisms for defining aggregation groups. In a similar vein,
Böhlen et al. [13] propose a framework that generalizes existing forms of temporal
aggregation by decoupling the partitioning of the time line from the specification
of the aggregation groups.

The development of efficient temporal aggregation algorithms has recently
received renewed interest. Kaufmann et al. [55,56] propose the timeline index to
efficiently support query processing, including instantaneous temporal aggrega-
tion, in the main memory DBMS HANA. The timeline index is a general data
structure that instead of intervals uses start and end points of the intervals.
Query processing is performed by scanning sorted lists of endpoints. Piatov and
Helmer [75] present a family of plane-sweeping algorithms that adopt the time-
line index for other forms of temporal aggregation, such as aggregation over fixed
intervals, sliding window aggregates, and MIN/MAX aggregates.

Temporal aggregation has been studied for different query languages and
data models. Böhlen et al. [12] investigate how temporal aggregation is sup-
ported in different types of temporal extensions to SQL. Selected temporal ag-
gregations are also found in non-relational query languages, such as XML, e.g.,
τXQuery [43].

Processing Temporal Joins. The overall efficiency of a query processor de-
pends highly on its ability to evaluate joins efficiently, as joins occur frequently.
Two classes of join algorithms can be distinguished: solutions that rely on in-
dexing or secondary access paths, and solutions for ad-hoc join operations that
operate on the original tables, but might take advantage of sorting the data.

Gao et al. [42] present a comprehensive and systematic study of join oper-
ations in temporal databases as of 2005, covering both semantics and imple-
mentation aspects. In addition to providing formal definitions of various join
operations, the paper classifies existing evaluation algorithms along the follow-
ing dimensions: nested-loop, partitioning, sort-merge, and index-based. The work
includes also an experimental performance evaluation of 19 join algorithms.

Recently, a number of new studies on the efficient evaluation of temporal
joins have been published. The timeline index by Kaufmann et al. [55, 56] is a
main memory index structure that supports also temporal joins where matching
tuples must be overlapping.

The overlap interval partition join algorithm by Dignös et al. [29] partitions
the input relations in such a way that the percentage of matching tuples in

corresponding partitions is maximized. This yields a robust join algorithm that
is not affected by the distribution of the data. The proposed partitioning works
both in disk-based and main-memory settings.

The lazy endpoint-based interval join algorithm by Piatov et al. [76] adopts
the timeline index. After creating a timeline index of the input relations, the two
index structures are scanned in an interleaved fashion. Thereby, active tuples are
managed by an in-memory hash map, called a gapless hash map, that is optimized
for sequential reads of the entire map. Additionally, a lazy evaluation technique
is used to minimize the number of scans of the active tuple map.

The disjoint interval partitioning join algorithm by Cafagna and Böhlen [22]
first creates so-called disjoint partitions for each relation, where all tuples in a
partition are temporally disjoint. To compute a temporal join, all outer parti-
tions are then sort-merge-joined with each inner partition to produce the final
result. Since tuples within a partition are disjoint, the algorithm is able to avoid
expensive backtracking.

Bouros and Mamoulis [21] implement a forward-scan based plane sweep algo-
rithm for temporal joins and provide two optimizations. The first optimization
groups consecutive tuples such that join results can be produced in batches in
order to avoid redundant comparisons. The second optimization extends the
grouping with a bucket index to further reduce the number of comparisons.
A major contribution of this work is a parallel evaluation strategy based on a
domain-based partitioning of the input relations.

4 Temporal Support in the SQL:2011 Standard

This section summarizes the most important temporal features of the SQL:2011
standard, which is the first SQL standard with support for time.

The ability to create and manipulate tables whose rows are associated with
one or two temporal periods, representing valid and transaction time, is the key
extension in SQL:2011 [58,97]. A core concept of this extension is the specifica-
tion of time periods associated with tables, bundled with support for updates,
deletions, and integrity constraints. The support for querying temporal relations
is limited to simple range restrictions and predicates.

In the following discussion, we use two valid time relations, which are illus-
trated in Figure 5 and initially contain the following data:
– an employee relation, named Emp, records that Anton was working in the

ifi department from 2010 to 2014 and in the idse department from 2015
to 2016;

– a department relation, named Dept, contains descriptions of the ifi and
idse departments.

4.1 Creation of Tables with Time Periods

SQL:2011 adopts an interval-based data model with tuple timestamping. Rather
than introducing a new data type for a time interval, a time period specification

2010 2011 2012 2013 2014 2015 2016 t

Anton, ifi

Anton, idse

(a) Emp relation

2009 2010 2011 2012 t

ifi, DBTG @ uzh

idse, DB @ unibz

(b) Dept relation

Fig. 5. Graphical illustration of the Emp and Dept relations.

is added as metadata to the table schema. A period specification combines a
physical start time attribute and an end time attribute to form a period. Periods
are specified with the PERIOD FOR clause:

PERIOD FOR <PeriodName> (<StartTime>, <EndTime>)

Here, <StartTime> and <EndTime> are of type DATE or TIMESTAMP and together
form a time period, which can be referred to by the name <PeriodName>. A
period is by default a closed-open interval, where StartTime is included and
EndTime is excluded4.

By designing periods as metadata, a minimally invasive approach was chosen
that achieves backward compatibility, i.e., old schemas, queries, and tools still
work. If start and end time points are already stored in a table (which is often
the case), a time period can be added without the need to modify the physical
table schema. A new data type would require more substantial changes across
the DBMS.

SQL:2011 supports valid time and transaction time, which are called, re-
spectively, application time and system time. At most one application time and
one system time can be specified for a table. Tables that have an application
time period are called application time period tables, and tables with a system
time period are called system time period tables. Tables that support both time
dimensions are usually called bitemporal tables, although SQL:2011 does not
provide an explicit name.

To facilitate reading and to be consistent with the research literature, we will
use the widely adopted terms valid time for application time and transaction time
for system time.

Valid Time Tables. Valid time tables store for each tuple the time interval
when the tuple is true in the modeled reality. In our example, the schema of the
Emp relation with a valid time attribute can be created as follows:

CREATE TABLE Emp (
EName VARCHAR,
EDept VARCHAR,

4 To comply with the SQL:2011 standard, in this section we use closed-open intervals,
whereas in the other sections we use closed-closed intervals.

EStart DATE,
EEnd DATE,
PERIOD FOR EPeriod (EStart, EEnd)

);

The PERIOD FOR clause specifies a valid time interval named EPeriod, which is
built from the physical attributes EStart and EEnd. Notice that EPeriod is not
a physical column of the table, but it is stored as metadata and can be used to
refer to the interval. A table with this schema is shown in Figure 6(a)).

When inserting tuples, the user has to specify the valid time period in addi-
tion to the nontemporal attribute values of the tuples. For instance, the following
statements insert two tuples indicating that Anton was working in the ifi de-
partment from 2010 to 2014 and in the idse department from 2015 to 2016:5

INSERT INTO Emp VALUES (Anton, ifi, 2010, 2015);
INSERT INTO Emp VALUES (Anton, idse, 2015, 2017);

Emp
EName EDept EStart EEnd
Anton ifi 2010 2015
Anton idse 2015 2017

(a) Valid time table

Dept
DName DDesc DStart DEnd
ifi DBTG @ uzh 2009 9999
idse DB @ unibz 2010 9999

(b) Transaction time table

Fig. 6. Tables with period timestamps.

Transaction Time Tables. In a transaction time table, each tuple stores
an interval that records when the tuple was current in the database. Different
from the valid time, the transaction time is set by the DBMS when a tuple is
created, updated, or deleted; the user is not allowed to change the transaction
time values. The following statement creates a transaction time table for the
department relation:

CREATE TABLE Dept (
DName VARCHAR,
DDesc TEXT,
DStart DATE GENERATED ALWAYS AS ROW START,
DEnd DATE GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM TIME (DStart, DEnd)

) WITH SYSTEM VERSIONING;

The GENERATED ALWAYS clause specifies that the two attributes DStart and DEnd
are generated by the system when a tuple is, respectively, inserted, deleted,
5 To keep the examples simple, we use only the year, not complete dates or timestamps.

or modified. The PERIOD FOR clause in combination with the WITH SYSTEM
VERSIONING clause define a system-versioned table. While the attribute names
DStart and DEnd are user-specified, the name of the transaction time attribute
must be SYSTEM TIME.

The following SQL statements insert two tuples in the system-versioned de-
partment relation as shown in Figure 6(b):
INSERT INTO DEPT (DName, DDesc) VALUES (’ifi’, ’DBTG @ uzh’);
INSERT INTO DEPT (DName, DDesc) VALUES (’idse’, ’DB @ unibz’);

The user specifies only the nontemporal attributes, whereas the transaction time
is added automatically by the system. The value of DStart is set to the current
transaction time when the tuple/row is created. Hence, the first tuple was in-
serted in 2009 and the second in 2010. The value 9999 of the DEnd attribute is
the highest possible timestamp value and indicates that the tuple is current in
the database.

A transaction time table conceptually distinguishes between current tuples
and historical tuples. A tuple is considered a current tuple if its timestamp
contains the current time (aka now). All other tuples are called historical tuples.
Historical tuples are never modified and form immutable snapshots of the past.

4.2 Modification of Tables
The SQL:2011 standard specifies the behavior of temporal tables in the case of
updates and deletions, which is different for valid time tables and transaction
time tables.

Valid Time Tables. Conventional update and delete operations work in the
same way as for nontemporal tables. That is, both nontemporal and temporal
attributes can be modified using the known SQL syntax. In addition, there is
enhanced support for modifying tuples over parts of the associated time peri-
ods by using the FOR PORTION OF clause. In this case, overlapping tuples are
automatically split or cut. Consider the following statement:
DELETE Emp
FOR PORTION OF EPeriod FROM DATE ’2011’ TO DATE ’2013’
WHERE EName = ’Anton’;

This statement deletes a portion of the first tuple in the Emp relation in Fig-
ure 7(a). As a consequence, the tuple is automatically split in two: one stating
that Anton was employed at ifi in 2010, and the other that he was employed from
2013 to 2014, as shown in Figure 7(b). Non-overlapping tuples are not affected.

The behavior of the UPDATE operation is similar. For instance, the following
statement would split the first tuple in Figure 7(a) into three tuples:
UPDATE Emp
FOR PORTION OF EPeriod FROM DATE ’2011’ TO DATE ’2013’
SET EDept = ’ai’
WHERE EName = ’Anton’;

Emp
EName EDept EStart EEnd
Anton ifi 2010 2015
Anton idse 2015 2017
(a) Before DELETE statement

Emp
EName EDept EStart EEnd
Anton ifi 2010 2011
Anton ifi 2013 2015
Anton idse 2015 2017
(b) After DELETE statement

Fig. 7. Modifying a valid time table.

Transaction Time Tables. Any modification of a transaction time table op-
erates only on the current tuples, and the user can only modify nontemporal
attributes, not the timestamp attribute. The transaction time is automatically
modified when nontemporal attributes of current tuples are modified. That is,
if a current tuple is modified, a copy of that tuple is created with the end time-
stamp set to the current time. The tuple ceases to be current in the database
and becomes a historical tuple. Then, the start time of the tuple is updated to
the current timestamp, and the nontemporal attributes are changed accordingly.
A DELETE statement creates only the historical tuple with end time equal to
the current time. The following UPDATE statement changes the description of
the IDSE department as of 2016 (cf. Figure 8):

UPDATE Dept
SET DDesc = ’DBS @ unibz’
WHERE DName = ’idse’;

This creates a historical tuple (idse, 2010, 2016, DB @ unibz), which
records the name of the idse department until 2015 (the gray tuple in Figure 8).
At the same time, the start time of the current tuple for the idse department
is set to 2016 and the description is set to DBS @ unibz.

Dept
DName DDesc DStart DEnd
ifi DBTG @ uzh 2009 9999
idse DB @ unibz 2010 9999

(a) Before UPDATE statement

Dept
DName DDesc DStart DEnd
ifi DBTG @ uzh 2009 9999
idse DBS @ unibz 2016 9999
idse DB @ unibz 2010 2016

(b) After UPDATE statement

Fig. 8. Modifying a transaction time table.

4.3 Integrity Constraints

Valid Time Tables. Primary keys enforce uniqueness of attribute values in
a table. In a valid time table, the natural interpretation of a primary key is

to require uniqueness of attribute values at each time point. To achieve this, the
primary key specification includes, in addition to the nontemporal key attributes,
also the valid time period together with the WITHOUT OVERLAPS constraint. This
ensures that only one value at a time exists for nontemporal key attributes (that
is, the same values for nontemporal key attributes require disjoint periods). For
instance, we can use the following primary key constraint to enforce that an
employee is never in two different departments at the same time:

ALTER TABLE Emp
ADD PRIMARY KEY (EName, EPeriod WITHOUT OVERLAPS);

This primary key constraint would reject the table in Figure 9 since the valid
times of both tuples with EName equal to Anton include year 2014. Without
the WITHOUT OVERLAPS clause, but including EPeriod, we would obtain a
conventional primary key, which is satisfied by the table in Figure 9 since the
tuples have syntactically different values for these two attributes.

Emp
EName EDept EStart EEnd
Anton ifi 2010 2015
Anton idse 2014 2017

Fig. 9. Primary key constraint is violated.

Valid time tables support also foreign keys to enforce the existence of certain
tuples. A foreign key constraint in a valid time table guarantees that, at each
point in time, for each tuple in the child table there exists a corresponding tuple
in the referenced parent table. Consider Figure 10 and assume that both Emp and

Emp
EName EDept EStart EEnd
Anton ifi 2010 2015
Anton idse 2015 2017

Dept
DName DDesc DStart DEnd
ifi DBTG @ uzh 2009 9999
idse DBS @ unibz 2016 9999
idse DB @ unibz 2010 2016

Fig. 10. Valid time foreign keys.

Dept are valid time tables with valid time EPeriod and DPeriod, respectively.
The following foreign key constraint achieves that, at any time, the department,
in which an employee works, exists:

ALTER TABLE Emp
ADD FOREIGN KEY (EDept, PERIOD EPeriod)
REFERENCES (DName, PERIOD DPeriod);

It is not required that a single matching tuple exists in the referenced parent
table that entirely covers the tuple in the child table. It is sufficient that the union
of the timestamps of matching tuples in the parent table covers the timestamp
of the corresponding tuple in the child table. The tables in Figure 10 satisfy the
above constraint. The first tuple in the Emp table is covered by a single tuple in
the Dept table, while the second tuple is covered by the union of the second and
third tuples in Dept.

Transaction Time Tables. The enforcement of primary and foreign key con-
straints in transaction time tables is much simpler since only current tuples
need to be considered. Historical data continue to satisfy the constraints as they
are never changed. Therefore, the time periods need not to be included in the
definition of the key constraints.

A primary key on an attribute in a transaction time table enforces that
at most one current tuple exists with a given value for that attribute. Note
that there might be several historical tuples with the same key attribute value.
Consider now that Emp and Dept are transaction time tables. Then, the following
primary key constraint ensures that there exists at most one current tuple with
a given DName value:

ALTER TABLE Dept
ADD PRIMARY KEY (DName);

In a similar way, also foreign keys need only be verified among the current
tuples of the two tables. That is, for each current tuple in the child table, there
exists a matching current tuple in the parent table. For instance, the following
constraint enforces that for each current Emp tuple there exists now a tuple in
the Dept table with DName = EDept:

ALTER TABLE Dept
ADD FOREIGN KEY (EDept) REFERENCES (DName);

4.4 Querying Temporal Tables

Valid Time Tables. SQL:2011 provides limited support for querying temporal
tables, in particular for valid time tables. The usual SQL syntax can be used to
specify constraints on the period end points. For instance, the following query
retrieves all departments that existed in 2012:

SELECT DName, DDesc
FROM Emp
WHERE DStart <= ’2012’ AND DEnd > ’2012’;

To facilitate the formulation of queries, so-called period predicates are intro-
duced, such as OVERLAPS, BEFORE, AFTER, etc. Although similar, they do not
correspond exactly to Allen’s interval relations [4]. With these predicates, the

selection predicate in the above statement can be specified as WHERE EPeriod
CONTAINS DATE ’2011’.

The temporal predicates can also be used in the FROM clause. For instance,
the OVERLAPS predicate allows to formulate a temporal join, which requires that
matching result tuples are temporally overlapping. The following query is a tem-
poral join on the department name of the Emp and Dept tables:

SELECT *
FROM Emp
JOIN Dept ON EDept = DName AND EPeriod OVERLAPS DPeriod;

Transaction Time Tables. To facilitate the retrieval of data from transaction
time tables, three new SQL extensions are provided. First, the FOR SYSTEM TIME
AS OF extension retrieves tuples as of a given time point, i.e., tuples with start
time less than or equal to and end time larger than a user-specified time point.
The following statement retrieves all employee tuples that were current in the
database in 2010:

SELECT *
FROM Emp FOR SYSTEM TIME AS OF DATE ’2010’;

The second extension, FOR SYSTEM TIME FROM TO, retrieves tuples between
any two time points, where the start time is included and the end time is ex-
cluded, corresponding to a closed-open interval model. The following statement
retrieves all tuples that were current from 2011 (including) up to 2013 (exclud-
ing):

SELECT *
FROM Dept FOR SYSTEM TIME FROM DATE ’2011’ TO DATE ’2013’;

The third extension is FOR SYSTEM TIME BETWEEN and is similar to the pre-
vious one, except that the end time point is also included, corresponding to a
closed-closed interval model:

SELECT *
FROM Dept FOR SYSTEM TIME BETWEEN DATE ’2011’ AND DATE ’2012’;

If none of the above extensions are specified in the FROM clause, only the
current tuples are considered. This corresponds to FOR SYSTEM TIME AS OF
CURRENT TIMESTAMP. This feature facilitates the migration to system-versioned
tables, as old queries would continue to produce correct results by considering
only current tuples.

5 Temporal Data Support in Commercial DBMSs

Since the introduction of the temporal features in the SQL:2011 standard [58,97],
major database vendors have started to implement temporal support in their

database management systems [59,73,74]. Some companies realized the need for
supporting temporal data earlier, and they extended their database systems with
basic temporal features, such as data types, functions, and time travel queries,
that make past states of a database available for querying.

IBM was the first vendor to integrate the temporal features from SQL:2011
into their DB2 database system, which occurred in version 10 [80]. DB2 supports
both valid time and transaction time tables, which are called business time and
system time tables, respectively. Transaction time tables are implemented by
means of two distinct tables: a current table and a history table. The current
table stores the current snapshot of the data, i.e., all tuples whose timestamp
contains the current time (now). The history table stores all previously current
data, i.e., all tuples that were modified or deleted in the past. Queries on trans-
action time tables are automatically rewritten into queries over one or both of
these two tables.

The Oracle DBMS supports temporal features from SQL:2011 as of version
12c. The temporal features are implemented using the Oracle flashback technol-
ogy [70]. The syntax employed differs slightly from that of the SQL standard, e.g.,
AS OF PERIOD FOR is used instead of FOR to retrieve data in a certain time pe-
riod. Earlier versions of Oracle offered similar support for temporal data through
the Oracle Workspace Manager [69]. The workspace manager (DBMS WM pack-
age) offered a PERIOD data type with associated predicates and functions as
well as additional support for valid and transaction time. Querying temporal
relations was possible at a specific time point (snapshot) or for a specific period.

PostgreSQL originally provided an external module [26] that introduced a
PERIOD data type for anchored time intervals together with Boolean predicates
and functions, such as intersection, union, and minus. Most of the functionality
of this module was subsequently integrated into the core of PostgreSQL ver-
sion 9.2 using range types [78]. Unlike the period specification that is metadata
in the SQL standard, a range type in PostgreSQL is a new data type in the
query language that was introduced to represent generic intervals, and it comes
with associated predicates, functions, and indices. Indices on range types are
based on the extendible index infrastructure GiST (Generalized Search Tree)
and SP-GiST (space-partitioned Generalized Search Tree). These indices sup-
port efficient querying when predicates involve range types as well as support
efficient constraint implementation, such as uniqueness for overlapping intervals
in a table.

The Teradata DBMS as of version 15.00, supports derived periods and tem-
poral features from the SQL:2011 standard. Version 13.10 already integrated
temporal features, including a PERIOD data type with associated predicates
and functions as well as support for valid and transaction time [3, 90]. The
querying of valid and transaction time tables is achieved by means of so-called
temporal statement modifiers such as SEQUENCED and NONSEQUENCED [16]. The
implementation of the sequenced semantics is based on query rewriting, where
a temporal query is rewritten into a standard SQL query [2, 3]. The support
for temporal features in Teradata has been enhanced gradually. As of version

14.10 [91], support for sequenced aggregation and coalescing (using the syntax
NORMALIZE ON) was added. Sequenced outer joins and set operations are not yet
supported.

Since 2016, Microsoft’s SQL Server [64] has supported temporal features
from SQL:2011. The support is limited to transaction time tables, called system
time tables. To achieve general temporal support for querying, users have to
write user-defined functions [8] that implement the fold and unfold functions of
IXSQL.

6 Native Support for Managing Temporal Data in
RDBMSs

In this section, we describe a recent approach [30] to extending a relational
database engine to achieve full-fledged, industrial-strength, and comprehensive
support for sequenced temporal queries. The key idea is to reduce temporal
queries to nontemporal queries by first adjusting the timestamps of the input
tuples, which produces intermediate relations on which the corresponding non-
temporal operators are applied. This solution provides comprehensive support
for temporal queries with sequenced semantics without limiting the use of queries
with nonsequenced semantics. The approach is systematic and separates interval
adjustment from the evaluation of the operators. This strategy renders it possi-
ble to fully leverage the query optimization and evaluation engine of a DBMS
for sequenced temporal query processing.

6.1 Requirements for Sequenced Temporal Queries

The evaluation of sequenced temporal queries over a temporal database has
to satisfy four properties: snapshot reducibility, change preservation, extended
snapshot reducibility, and scaling (cf. Section 2.3). Two important ingredients
are needed for the query execution in order to achieve these properties:

– timestamps must be adjusted for the result, and
– some values might have to be scaled to the adjusted timestamps.

This is illustrated in the example in Figure 11, which computes the budget for
each department in the Dept relation. In a nontemporal context, the result would
be 380K for the DB department and 150K for the AI department. In a temporal
context, we want to obtain the time-varying budget shown in Figure 11(b). We
observe that there are two result tuples for the DB department. Result tuple z1 is
over the time period [Feb,Apr], where only one project is running. Result tuple
z2 is over the time period [May, Jul] with two contributing input tuples, namely
r1 and r2. A second observation is that the total budget of 200K of the input
tuple r1 is distributed over (or scaled to) the two sub-periods [Feb,Apr] and
[May,Sep], i.e., 100K is assigned to each of the two periods.

A major limitation of SQL that renders it difficult to process interval times-
tamped data, such as in the above example, is that periods are considered as

Dept
Name Dept Budget Time

r1 Sue DB 200K [Feb, Jul]
r2 Tim DB 180K [May, Jul]
r3 Joe AI 150K [Apr,Aug]

(a) Department relation

Result
Dept SUM Time

z1 DB 100K [Feb,Apr]
z2 DB 280K [May, Jul]
z3 AI 150K [Apr,Aug]
(b) Budget per department

Fig. 11. Compute budget for each department.

atomic units. Comparing interval timestamped tuples in SQL yields the following
results:

– (DB, [May, Jul]) = (DB, [May, Jul])→ true
– (DB, [Feb,Apr]) = (DB, [May, Jul])→ false
– (DB, [Feb, Jul]) = (DB, [May, Jul])→ false

The first two comparisons are ok, since the two tuples are, respectively, identi-
cal in the first case and have disjoint timestamps (and hence are syntactically
different) in the second case. The result of the last comparison is problematic in
a temporal context. Since the two timestamps are overlapping, the two tuples
are equal over the common part of the timestamps.

6.2 Reducing Temporal Operators to Nontemporal Operators via
Temporal Alignment

Based on the above requirements and observations, the core of the temporal
alignment approach [30] is to adjust the timestamps of input tuples such that
all tuples that contribute to a single result tuple have identical timestamps. The
adjusted timestamps can then be treated as atomic units, and the correspond-
ing nontemporal operator with SQL’s notion of equality produces the expected
result. Additionally, for some queries, the original timestamp needs to be pre-
served, and the attribute values need to be scaled. This reduction of a temporal
operator ψT to the corresponding nontemporal operator ψ is a four-step process
(cf. Figure 12):

1. Timestamp propagation replicates the original timestamps in the argument
relations as additional attributes. This step is optional and is only executed
if the original timestamps are needed, either to scale attribute values in
step 3 or to evaluate a predicate or a function that references the original
timestamps, in step 4.

2. Interval adjustment splits the overlapping timestamps of the input tuples
such that they are aligned. This yields an intermediate relation, where all
tuples that (in step 4) are processed together to produce a result tuple have
the same timestamp. This intermediate relation can conceptually be consid-
ered as a sequence of snapshots, each of which lasts for one or more time

ψT

Timestamp
propagation ε

Interval adjustment
(normalizer N or aligner φ)

Attribute
value scaling

Nontemporal
operator ψ z

1)

2)

3)

4)

Fig. 12. Reduction of a temporal operator ψT to the corresponding nontemporal oper-
ator ψ using interval adjustment, timestamp propagation, and attribute value scaling.

points. Two interval adjustment primitives are needed: a temporal normal-
izer, N , for the operators π, ϑ, −, ∩, and ∪, where for each time point,
one input tuple can contribute to at most one result tuple; and a temporal
aligner, φ, for the operators ×, 1, 1, 1 , 1 , and �, where for each time
point, one input tuple can contribute to more than one result tuple.

3. Attribute value scaling is optional and scales, if required, the attribute values
of intermediate tuples to the adjusted timestamps. For this, the original and
new timestamps in addition to the original value of the attribute to be scaled
are needed. As part of this step, the propagated timestamps are removed if
they are no longer needed by subsequent operators.

4. The nontemporal operator evaluation applies the corresponding nontemporal
operator ψ to the intermediate relations. An additional equality constraint
over the adjusted timestamps (e.g., as a grouping attribute for aggregation
or an equality predicate in joins) guarantees that all tuples that produce
a single result tuple are processed together. For join operations, a post-
processing step α is required to remove non-maximal duplicates.

The interval adjustment (step 2) and the evaluation of the corresponding non-
temporal operator (step 4) form the core of the temporal alignment approach
and guarantee snapshot reducibility and change preservation. In addition, the
propagation of the timestamp intervals (step 1) enables attribute value scaling
(step 3) and the access to the original timestamp in step 4 (needed for extended
snapshot reducibility).

Table 1 provides a summary of the reduction rules, following the above strat-
egy, for all operators of the relational algebra. Here, r and s are temporal rela-
tions, A and B are sets of attributes, T is the timestamp attribute, θ is a condi-
tion, and α is a post-processing operator that removes duplicates. For instance,
the temporal aggregation operator Bϑ

T
F (r) = B,TϑF (NB(r, r)) with grouping

attributes B can be computed as follows: First, input relation r is aligned by
calling the temporal normalizer NB(r, r), which yields an intermediate relation
of aligned tuples. Then, nontemporal aggregation is applied to the intermediate
result. By adding the timestamp attribute T as an (additional) grouping at-
tribute, the intermediate tuples are grouped by snapshot, and the nontemporal
aggregation operator is applied to each snapshot.

Figure 13 illustrates the temporal alignment approach by using a tempo-
ral aggregation query to compute the number of projects for each department:
Deptϑ

T
Count(Proj)(Proj). Since timestamp propagation and attribute value scaling

Table 1. Reduction rules ψT −→ {N ,φ} + ψ (from [27,30])

Operator Reduction
Selection σTθ (r) = σθ(r)
Projection πTB(r) = πB,T (NB(r, r))
Aggregation Bϑ

T
F (r) = B,TϑF (NB(r, r))

Difference r−T s = NA(r, s)−NA(s, r)
Union r∪T s = NA(r, s)∪NA(s, r)
Intersection r∩T s = NA(r, s)∩NA(s, r)
Cartesian Product r ×T s = α(φ>(r, s)1r.T=s.Tφ>(s, r))
Inner Join r1Tθ s = α(φθ(r, s)1θ∧r.T=s.Tφθ(s, r))
Left Outer Join r 1Tθ s = α(φθ(r, s) 1 θ∧r.T=s.Tφθ(s, r))
Right Outer Join r1 T

θ s = α(φθ(r, s)1 θ∧r.T=s.Tφθ(s, r))
Full Outer Join r 1 T

θ s = α(φθ(r, s) 1 θ∧r.T=s.Tφθ(s, r))
Anti Join r�Tθ s φθ(r, s)�θ∧r.T=s.Tφθ(s, r)

are not needed for this query, steps 1 and 3 are skipped. During the adjustment
of the timestamps using the temporal normalizer (step 2), the first input tuple
r1 is split into tuples r′

1 and r′′
1 . The split point is determined by tuple r2, which

belongs to the same department. There is no need to split tuples r2 and r3, yield-
ing an intermediate relation with four tuples. Then, the intermediate relation is
aggregated (step 4) by using the nontemporal aggregation, where the timestamp
attribute T is added to the grouping attributes. Hence, all tuples with the same
adjusted timestamp and the same department are processed together.

Figure 14 illustrates a temporal left outer join using the temporal aligner
primitive. Given a manager relation Mgr and a project relation Proj, we want
to determine a manager’s budget: Mgr 1TMgr.Dept=Proj.Dept Proj. Again, to keep
the example simple, timestamp propagation and attribute value scaling are not
involved. Hence, we first align the timestamps of the two input relations. In the
manager relation, the only tuple m1 is split into three intermediate tuples. The
first two, m′

1 and m′′
1 , are generated from the intersection of m1’s timestamp

and the timestamp of the joining tuples r1 and r2 of Proj, respectively. The
third intermediate tuple, m′′′

1 , covers the part of m1’s timestamp not covered by
any matching tuple in the project relation; this tuple is needed for the outer join.
Similarly, the tuples in the project relation are adjusted. The first two tuples are
completely covered by matching tuple m1, so no split is required. The third tuple
need not to be split since it has no matching tuple in Mgr. After adjusting the
timestamps of the two input relations, the two intermediate tables are joined by
using the nontemporal left outer join, where the timestamp attribute T is added
to the join condition in order to join only tuples that have identical timestamps.

6.3 Temporal Primitives

The temporal alignment approach requires two new temporal primitives, a tem-
poral normalizer and a temporal aligner, to break the timestamps of the input
tuples into aligned pieces.

The temporal normalizer is used for temporal operators, ψT (r1, . . . , rn), for
which more than one tuple of each argument relation ri can contribute to a
result tuple z (i.e., the lineage set of z can contain more than one tuple from
each input relation). This holds for the following operators: aggregation (ϑ),
projection (π), difference (−), intersection (∩), and union (∪). The temporal
normalizer splits each input tuple into temporally disjoint pieces, where groups
of matching tuples define the split points. This is illustrated in Figure 15(a) for
an input tuple r and two other input tuples g1 and g2 in the same group. Tuple
r is split whenever another tuple in the same group starts or finishes, producing
r1, r2 and r3. Moreover, all parts of r that are not covered by another tuple in
the group are reported, i.e., r4. Notice that the intermediate tuples are disjoint.

The temporal aligner is used for operators, ψT (r1, . . . , rn), for which at most
one input tuple from each argument relation ri can contribute to a result tuple
z (i.e., the lineage set of z contains at most one tuple from each input relation).
This holds for the following operators: Cartesian product (×) and all forms of
joins (1, 1, 1 , 1 , �). The temporal aligner considers pairs of matching tuples
and determines the intersections of their timestamps; the resulting intermediate
relation might contain temporally overlapping tuples. Figure 15(b) illustrates
the temporal aligner for an input tuple r and two other matching input tuples

Proj
Name Dept Proj T

r1 Sue DB PrjX [Jan, Jun]
r2 Tim DB PrjY [Apr, Jun]
r3 Joe AI PrjZ [Mar,Aug]

Name Dept Proj T
r′

1 Sue DB PrjX [Jan,Mar]
r′′

1 Sue DB PrjX [Apr, Jun]
r′

2 Tim DB PrjY [Apr, Jun]
r′

3 Joe AI PrjZ [Mar,Aug]

Dept Count T
DB 1 [Jan,Mar]
DB 2 [Apr, Jun]
AI 1 [Mar,Aug]

Step 2: interval
adjustment with N

Step 4: nontem-
poral aggregation
grouped by Dept
and T

Jan Feb Mar Apr May Jun Jul Aug t

Sue, DB, PrjX

Tim, DB, PrjY

Joe, AI, PrjZ

Sue, DB, PrjX Sue, DB, PrjX

Tim, DB, PrjY

Joe, AI, PrjZ

DB, 1 DB, 2

AI, 2

Fig. 13. Illustration of temporal normalizer for a temporal aggregation query.

Mgr
Mgr Dept T

m1 Ann DB [Feb,Nov]

Proj
Name Dept P T

r1 Sue DB PrjX [Feb, Jul]
r2 Tim DB PrjY [May, Jul]
r3 Joe AI PrjZ [Apr, Sep]

Mgr Dept T
m′

1 Ann DB [Feb, Jul]
m′′

1 Ann DB [May, Jul]
m′′′

1 Ann DB [Aug,Nov]

Name Dept P T
r′

1 Sue DB PrjX [Feb, Jul]
r′

2 Tim DB PrjY [May, Jul]
r′

3 Joe AI PrjZ [Apr, Sep]

Mgr Dept Name P T
Ann DB Sue PrjX [Feb, Jul]
Ann DB Tim PrjY [May, Jul]
Ann DB ω ω [Aug,Nov]

Step 2: interval
adjustment with φ

Step 2: interval
adjustment with φ

Step 4: nontemporal LO
join on Dept and T

Fig. 14. Illustration of temporal aligner for a temporal left-outer join query.

g1 and g2. Tuple r produces three intermediate tuples: one as the intersection
with tuple g1, one as the intersection with tuple g2, and one for the part of the
timestamp that is not covered by any matching tuple (r3).

Jan Feb Mar Apr May Jun Jul Aug t

r

g1

g2

r1

{r, g1} r2

{r, g1, g2}

r3

{r, g2} r4

{r}

(a) Temporal normalizer

Jan Feb Mar Apr May Jun Jul Aug t

r

g1

g2

r1

(r, g1) r2

(r, g2)

r3

(r, ω)

(b) Temporal aligner

Fig. 15. Temporal normalizer vs. aligner (from [27,30]).

6.4 Implementation

The temporal alignment approach to transform temporal queries to the corre-
sponding nontemporal queries with the help of two adjustment primitives re-
quires minimal extensions of an existing DBMS. Moreover, this strategy renders

it possible to fully leverage the query optimization and evaluation engine of a
DBMS for sequenced temporal query processing, and it does not affect the use of
nonsequenced queries. The key extension is the integration of the normalizer N
and aligner φ operators into the DBMS kernel. Timestamp propagation (ε) and
attribute value scaling can be achieved, respectively, by means of generalized
projections and user defined functions.

The temporal alignment approach has been implemented in the kernel of the
PostgreSQL database system and is available at tpg.inf.unibz.it [27, 30].

7 Conclusion

In this tutorial, we provided an overview of temporal data management, covering
both research results and commercial database management systems. Following a
brief summary of important concepts that have been developed and used in tem-
poral database research, we discussed the state-of-the-art in temporal database
research, focusing on query languages and evaluation algorithms. We then de-
scribed the most important temporal features in SQL:2011, which is the first SQL
standard to introduce temporal support in SQL. Next, we briefly discussed the
degree to which temporal features of the SQL:2011 standard have been adopted
by commercial database management systems. The tutorial ends with a descrip-
tion of a recent framework that provides a comprehensive and native solution
to the processing of so-called sequenced temporal queries in relational database
management systems.

Future work in temporal databases points in various directions. While tem-
poral alignment provides a solid and systematic framework for implementing
temporal query support in relational database systems, a number of open issues
require further investigation. First, it would be interesting to extend the frame-
work to multisets that allow duplicates, as well as to support two or more time
dimensions. Second, for some operators, a significant boost in efficiency is needed
to scale for very large datasets. Ideas for performance optimizations range from
additional and more targeted alignment primitives over more precise cost es-
timates to specialized query algorithms and equivalence rules. Third, support
for user-friendly formulation of complex temporal queries is needed, including a
SQL-based temporal query language.

References

1. Mikkel Agesen, Michael H. Böhlen, Lasse Poulsen, and Kristian Torp. A split
operator for now-relative bitemporal databases. In Proceedings of the 17th Inter-
national Conference on Data Engineering, ICDE 2001, pages 41–50, 2001.

2. Mohammed Al-Kateb, Ahmad Ghazal, and Alain Crolotte. An efficient SQL
rewrite approach for temporal coalescing in the teradata RDBMS. In Proceedings
of the 23rd International Conference on Database and Expert Systems Applica-
tions, DEXA 2012, volume 7447 of Lecture Notes in Computer Science, pages
375–383. Springer, 2012.

tpg.inf.unibz.it

3. Mohammed Al-Kateb, Ahmad Ghazal, Alain Crolotte, Ramesh Bhashyam,
Jaiprakash Chimanchode, and Sai Pavan Pakala. Temporal query processing
in teradata. In Proceedings of the 16th International Conference on Extending
Database Technology, EDBT 2013, pages 573–578, 2013.

4. James F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, 1983.

5. Samuel Arbesman. Stop hyping big data and start paying attention to ’long
data’. Wired.com, https://www.wired.com/2013/01/forget-big-data-think-long-
data/, 2013.

6. John Bair, Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass.
Notions of upward compatibility of temporal query languages. Wirtschaftsinfor-
matik, 39(1):25–34, 1997.

7. Andreas Behrend, Philip Schmiegelt, Jingquan Xie, Ronny Fehling, Adel
Ghoneimy, Zhen Hua Liu, Eric S. Chan, and Dieter Gawlick. Temporal state
management for supporting the real-time analysis of clinical data. In Proceedings
of the 18th East European Conference on Advances in Databases and Information
Systems and Associated Satellite Events - New Trends in Database and Informa-
tion Systems II, ADBIS 2014, pages 159–170. Springer, 2014.

8. Itzik Ben-Gan, Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, and Isaac
Kunen. Inside Microsoft SQL Server 2008 T-SQL Programming, chapter 12.
Temporal Support in the Relational Model. Microsoft Press, 2008.

9. Claudio Bettini, Sushil Jajodia, and Xiaoyang Sean Wang. Time granularities in
databases, data mining, and temporal reasoning. Springer, 2000.

10. Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Temporal granularity.
In Liu and Özsu [60], pages 2968–2973.

11. Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. An algebraic frame-
work for temporal attribute characteristics. Ann. Math. Artif. Intell., 46(3):349–
374, 2006.

12. Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. How would you
like to aggregate your temporal data? In Proceedings of the 13th International
Symposium on Temporal Representation and Reasoning, TIME 2006, pages 121–
136, 2006.

13. Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Multi-dimensional
aggregation for temporal data. In Proceedings of the 10th International Con-
ference on Extending Database Technology, EDBT 2006, volume 3896 of Lecture
Notes in Computer Science, pages 257–275. Springer, 2006.

14. Michael H. Böhlen and Christian S. Jensen. Temporal data model and query lan-
guage concepts. In Encyclopedia of Information Systems, pages 437–453. Elsevier,
2003.

15. Michael H. Böhlen and Christian S. Jensen. Sequenced semantics. In Liu and
Özsu [60], pages 2619–2621.

16. Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Temporal
statement modifiers. ACM Trans. Database Syst., 25(4):407–456, 2000.

17. Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Current
semantics. In Liu and Özsu [60], pages 544–545.

18. Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Nonsequenced
semantics. In Liu and Özsu [60], pages 1913–1915.

19. Michael H. Böhlen, Richard T. Snodgrass, and Michael D. Soo. Coalescing in
temporal databases. In Proceedings of 22th International Conference on Very
Large Data Bases, VLDB 1996, pages 180–191, 1996.

20. Sarah Cohen Boulakia and Wang Chiew Tan. Provenance in scientific databases.
In Liu and Özsu [60], pages 2202–2207.

21. Panagiotis Bouros and Nikos Mamoulis. A forward scan based plane sweep algo-
rithm for parallel interval joins. PVLDB, 10(11):1346–1357, 2017.

22. Francesco Cafagna and Michael H. Böhlen. Disjoint interval partitioning. The
VLDB J., 26(3):447–466, 2017.

23. Jan Chomicki, David Toman, and Michael H. Böhlen. Querying ATSQL databases
with temporal logic. ACM Trans. Database Syst., 26(2):145–178, 2001.

24. Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view
data in a warehousing environment. ACM Trans. Database Syst., 25(2):179–227,
2000.

25. C. J. Date, Hugh Darwen, and Nikos A. Lorentzos. Temporal data and the rela-
tional model. Elsevier, 2002.

26. Jeff Davis. Online temporal PostgreSQL reference. http://temporal.projects.
postgresql.org/reference.html, 2009.

27. Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2012, pages 433–444, 2012.

28. Anton Dignös, Michael H. Böhlen, and Johann Gamper. Query time scaling of
attribute values in interval timestamped databases. In Proceedings of the 29th
International Conference on Data Engineering, ICDE 2013, pages 1304–1307,
2013.

29. Anton Dignös, Michael H. Böhlen, and Johann Gamper. Overlap interval par-
tition join. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2014, pages 1459–1470, 2014.

30. Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen.
Extending the kernel of a relational DBMS with comprehensive support for se-
quenced temporal queries. ACM Trans. Database Syst., 41(4):26:1–26:46, 2016.

31. Curtis E. Dyreson. Chronon. In Liu and Özsu [60], page 329.
32. Curtis E. Dyreson, Christian S. Jensen, and Richard T. Snodgrass. Now in tem-

poral databases. In Liu and Özsu [60], pages 1920–1924.
33. Curtis E. Dyreson, Hui-ling Lin, and Yingxia Wang. Managing versions of web

documents in a transaction-time web server. In Proceedings of the 13th interna-
tional conference on World Wide Web, WWW 2004, pages 422–432, 2004.

34. Curtis E. Dyreson and Venkata A. Rani. Translating temporal SQL to nested
SQL. In Proceedings of the 23rd International Symposium on Temporal Repre-
sentation and Reasoning, TIME 2016, pages 157–166, 2016.

35. Curtis E. Dyreson, Venkata A. Rani, and Amani Shatnawi. Unifying sequenced
and non-sequenced semantics. In Proceedings of the 22nd International Sympo-
sium on Temporal Representation and Reasoning, TIME 2015, pages 38–46, 2015.

36. Christian S. Jensen (editor), James Clifford, Shashi K. Gadia, Fabio Grandi,
Patrick P. Kalua, Nick Kline, Nikos Lorentzos, Yannis Mitsopoulos, Angelo Mon-
tanari, Sunil S. Nair, Elisa Peressi, Barbara Pernici, Edward L. Robertson, John F.
Roddick, Nandlal L. Sarda, Maria Rita Scalas, Arie Segev, Richard T. Snodgrass,
Abdullah Tansel, Paolo Tiberio, Alexander Tuzhilin, and Gene T. J. Wuu. A
consensus test suite of temporal database queries. Technical Report R 93-2034,
Aalborg University, Department of Mathematics and Computer Science, Fredrik
Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark, November 1993.

37. Opher Etzion, Sushil Jajodia, and Suryanarayana M. Sripada, editors. Temporal
Databases: Research and Practice., volume 1399 of Lecture Notes in Computer
Science. Springer, 1998.

http://temporal.projects.postgresql.org/reference.html
http://temporal.projects.postgresql.org/reference.html

38. Shashi K. Gadia. A homogeneous relational model and query languages for tem-
poral databases. ACM Trans. Database Syst., 13(4):418–448, 1988.

39. Shashi K. Gadia and Chuen-Sing Yeung. A generalized model for a relational
temporal database. In Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1988, pages 251–259, 1988.

40. Antony Galton. A critical examination of Allen’s theory of action and time. Artif.
Intell., 42(2-3):159–188, 1990.

41. Johann Gamper, Michael H. Böhlen, and Christian S. Jensen. Temporal aggre-
gation. In Liu and Özsu [60], pages 2924–2929.

42. Dengfeng Gao, Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo.
Join operations in temporal databases. The VLDB J., 14(1):2–29, 2005.

43. Dengfeng Gao and Richard T. Snodgrass. Temporal slicing in the evaluation of
XML queries. In Proceedings of the 29th International Conference on Very Large
Data Bases, VLDB 2003, pages 632–643, 2003.

44. Fabio Grandi. Temporal databases. In Encyclopedia of Information Science and
Technology, Third Edition, pages 1914–1922. IGI Global, 2015.

45. Fabio Grandi, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo. A
relational algebra for streaming tables living in a temporal database world. In
Proceedings of the 24th International Symposium on Temporal Representation and
Reasoning, TIME 2017, pages 15:1–15:17, 2017.

46. Fabio Grandi, Federica Mandreoli, and Paolo Tiberio. Temporal modelling
and management of normative documents in XML format. Data Knowl. Eng.,
54(3):327–354, 2005.

47. Christian S. Jensen, Curtis E. Dyreson, Michael H. Böhlen, James Clifford, Ramez
Elmasri, Shashi K. Gadia, Fabio Grandi, Patrick J. Hayes, Sushil Jajodia, Wolf-
gang Käfer, Nick Kline, Nikos A. Lorentzos, Yannis G. Mitsopoulos, Angelo Mon-
tanari, Daniel A. Nonen, Elisa Peressi, Barbara Pernici, John F. Roddick, Nand-
lal L. Sarda, Maria Rita Scalas, Arie Segev, Richard T. Snodgrass, Michael D.
Soo, Abdullah Uz Tansel, Paolo Tiberio, and Gio Wiederhold. The consensus
glossary of temporal database concepts. In Temporal Databases, Dagstuhl, pages
367–405, 1997.

48. Christian S. Jensen and Richard T. Snodgrass. Snapshot equivalence. In Liu and
Özsu [60], page 2659.

49. Christian S. Jensen and Richard T. Snodgrass. Temporal data models. In Liu
and Özsu [60], pages 2952–2957.

50. Christian S. Jensen and Richard T. Snodgrass. Temporal element. In Liu and
Özsu [60], page 2966.

51. Christian S. Jensen and Richard T. Snodgrass. Time instant. In Liu and Özsu [60],
page 3112.

52. Christian S. Jensen and Richard T. Snodgrass. Timeslice operator. In Liu and
Özsu [60], pages 3120–3121.

53. Christian S. Jensen and Richard T. Snodgrass. Transaction time. In Liu and
Özsu [60], pages 3162–3163.

54. Christian S. Jensen and Richard T. Snodgrass. Valid time. In Liu and Özsu [60],
pages 3253–3254.

55. Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M. Fischer,
Donald Kossmann, Franz Färber, and Norman May. Timeline index: a unified
data structure for processing queries on temporal data in SAP HANA. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, pages 1173–1184, 2013.

56. Martin Kaufmann, Panagiotis Vagenas, Peter M. Fischer, Donald Kossmann, and
Franz Färber. Comprehensive and interactive temporal query processing with
SAP HANA. PVLDB, 6(12):1210–1213, 2013.

57. Nick Kline and Richard T. Snodgrass. Computing temporal aggregates. In Pro-
ceedings of the 11th International Conference on Data Engineering, ICDE 1995,
pages 222–231, 1995.

58. Krishna G. Kulkarni and Jan-Eike Michels. Temporal features in SQL: 2011.
SIGMOD Record, 41(3):34–43, 2012.

59. Florian Künzner and Dusan Petkovic. A comparison of different forms of tem-
poral data management. In Proceedings of the 11th International Conference
of Beyond Databases, Architectures and Structures, BDAS 2015, volume 521 of
Communications in Computer and Information Science, pages 92–106. Springer,
2015.

60. Ling Liu and M. Tamer Özsu, editors. Encyclopedia of Database Systems. Springer
US, 2009.

61. Inés Fernando Vega López, Richard T. Snodgrass, and Bongki Moon. Spa-
tiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng.,
17(2):271–286, 2005.

62. Nikos A. Lorentzos. Time period. In Liu and Özsu [60], page 3113.
63. Nikos A. Lorentzos and Yannis G. Mitsopoulos. SQL extension for interval data.

IEEE Trans. Knowl. Data Eng., 9(3):480–499, 1997.
64. Microsoft. SQL Server 2016 - temporal tables. https://docs.microsoft.com/

en-us/sql/relational-databases/tables/temporal-tables, 2016.
65. Vera Zaychik Moffitt and Julia Stoyanovich. Towards sequenced semantics for

evolving graphs. In Proceedings of the 20th International Conference on Extending
Database Technology, EDBT 2017, pages 446–449, 2017.

66. Angelo Montanari and Jan Chomicki. Time domain. In Liu and Özsu [60], pages
3103–3107.

67. Bongki Moon, Inés Fernando Vega López, and Vijaykumar Immanuel. Efficient
algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng.,
15(3):744–759, 2003.

68. Bongki Moon, Inés Fernando Vega López, and Vijaykumar Immanuel. Efficient
algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng.,
15(3):744–759, 2003.

69. Chuck Murray. Oracle database workspace manager developer’s guide. http:
//download.oracle.com/docs/cd/B28359_01/appdev.111/b28396.pdf, 2008.

70. Oracle. Database development guide - temporal validity support. https://docs.
oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967, 2016.

71. Katerina Papaioannou and Michael H. Böhlen. Temprora: Top-k temporal-
probabilistic results analysis. In Proceedings of the 32nd IEEE International
Conference on Data Engineering, ICDE 2016, pages 1382–1385, 2016.

72. Fabio Persia, Fabio Bettini, and Sven Helmer. An interactive framework for
video surveillance event detection and modeling. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM 2017, pages
2515–2518, 2017.

73. Dusan Petkovic. Modern temporal data models: Strengths and weaknesses. In
Proceedings of the 11th International Conference of Beyond Databases, Architec-
tures and Structures, BDAS 2015, volume 521 of Communications in Computer
and Information Science, pages 136–146. Springer, 2015.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28396.pdf
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28396.pdf
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967

74. Dusan Petkovic. Temporal data in relational database systems: A comparison. In
New Advances in Information Systems and Technologies - Volume 1, volume 444
of Advances in Intelligent Systems and Computing, pages 13–23. Springer, 2016.

75. Danila Piatov and Sven Helmer. Sweeping-based temporal aggregation. In Pro-
ceedings of the 15th International Symposium on Advances in Spatial and Tem-
poral Databases, SSTD 2017, pages 125–144, 2017.

76. Danila Piatov, Sven Helmer, and Anton Dignös. An interval join optimized for
modern hardware. In Proceedings of the 32nd International Conference on Data
Engineering, ICDE 2016, pages 1098–1109, 2016.

77. Evaggelia Pitoura. Historical graphs. In Tutorial Lectures of the 7th European
Summer School on Business Intelligence, eBISS 2017, Lecture Notes in Business
Information Processing. Springer, 2017.

78. PostgreSQL Global Development Group. Documentation manual PostgreSQL -
range types. http://www.postgresql.org/docs/9.2/static/rangetypes.html,
2012.

79. Colette Rolland, François Bodart, and Michel Léonard, editors. Proceedings of
the IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Information
Systems, 1988.

80. Cynthia Saracco, Matthias Nicola, and Lenisha Gandhi. A matter of
time: Temporal data management in DB2 10. http://www.ibm.com/
developerworks/data/library/techarticle/dm-1204db2temporaldata/
dm-1204db2temporaldata-pdf.pdf, 2012.

81. Richard T. Snodgrass, editor. Proceedings of the International Workshop on an
Infrastructure for Temporal Databases, 1993.

82. Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer,
1995.

83. Richard T. Snodgrass. A case study of temporal data. Teradata Corporation,
2010.

84. Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and Andreas
Steiner. Adding valid time to sql/temporal. Technical Report ANSI-96-501r2,
October 1996.

85. Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and Andreas
Steiner. Transitioning temporal support in TSQL2 to SQL3. In Temporal
Databases, Dagstuhl, pages 150–194, 1997.

86. Daeweon Son and Ramez Elmasri. Efficient temporal join processing using time
index. In Proceedings of the 8th International Conference on Scientific and Sta-
tistical Database Management, SSDBM 1996, pages 252–261, 1996.

87. Michael D. Soo, Christian S. Jensen, and Richard T. Snodgrass. An algebra for
TSQL2. In The TSQL2 Temporal Query Language, chapter 27, pages 501–544.
Kluwer, 1995.

88. Abdullah Uz Tansel, James Clifford, Shashi K. Gadia, Sushil Jajodia, Arie Segev,
and Richard T. Snodgrass, editors. Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, 1993.

89. Yufei Tao, Dimitris Papadias, and Christos Faloutsos. Approximate temporal
aggregation. In Proceedings of the 20th International Conference on Data Engi-
neering, ICDE 2004, pages 190–201, 2004.

90. Teradata. Teradata database 13.10 - temporal table support. http://www.info.
teradata.com/download.cfm?ItemID=1005295, 2010.

91. Teradata. Teradata database 14.10 - temporal table support. http://www.info.
teradata.com/eDownload.cfm?itemid=131540028, 2014.

http://www.postgresql.org/docs/9.2/static/rangetypes.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.info.teradata.com/download.cfm?ItemID=1005295
http://www.info.teradata.com/download.cfm?ItemID=1005295
http://www.info.teradata.com/eDownload.cfm?itemid=131540028
http://www.info.teradata.com/eDownload.cfm?itemid=131540028

92. Paolo Terenziani and Richard T. Snodgrass. Reconciling point-based and interval-
based semantics in temporal relational databases: A treatment of the telic/atelic
distinction. IEEE Trans. Knowl. Data Eng., 16(5):540–551, 2004.

93. David Toman. Point vs. interval-based query languages for temporal databases. In
Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, PODS 1996, pages 58–67, 1996.

94. David Toman. Point-based temporal extensions of SQL and their efficient im-
plementation. In Temporal Databases: Research and Practice, pages 211–237.
Springer Berlin Heidelberg, 1998.

95. Paul A. Tuma. Implementing Historical Aggregates in TempIS. PhD thesis, Wayne
State University, 1992.

96. Jun Yang and Jennifer Widom. Incremental computation and maintenance of
temporal aggregates. The VLDB J., 12(3):262–283, 2003.

97. Fred Zemke. Whats new in SQL: 2011. SIGMOD Record, 41(1):67–73, 2012.
98. Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos,

and Bernhard Seeger. Efficient computation of temporal aggregates with range
predicates. In Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, PODS 2001, 2001.

99. Donghui Zhang, Vassilis J. Tsotras, and Bernhard Seeger. Efficient temporal join
processing using indices. In Proceedings of the 18th International Conference on
Data Engineering, ICDE 2002, pages 103–113, 2002.

100. Xin Zhou, Fusheng Wang, and Carlo Zaniolo. Efficient temporal coalescing query
support in relational database systems. In Proceedings of the 17th International
Conference on Database and Expert Systems Applications, DEXA 2006, pages
676–686, 2006.

	Temporal Data Management – An Overview

