15 research outputs found

    A new treatment process to recover magnetite, zinc and lead from iron and steelmaking dusts and sludges

    Get PDF
    Steelmaking dusts are frequently classified as hazardous residues, due to their eco-toxicity characteristics. This derives mainly from the presence of heavy metals like zinc, lead and cadmium in their compositions, in forms that are easily leachable by water or slightly acidic or alkaline media. Following the most employed eco-toxicity standard tests, like DIN 38414-S41) from Germany, and TCLP (Toxicity Characteristic Leaching Procedure)2) from the United States, steelmaking dusts present a high level of mobility of heavy metals, what is relevant for the evaluation of their environmental impact, when disposed in controlled landfills. In the present project (contract number ERB IC 15CT97-0704), a new process is being developed to recover valuable metals and products from steelmaking dusts and sludges. Two different process routes are being evaluated, both from the technical and from the economic points of view. A pre-treatment stage, based on water leaching of the dusts, is, in both cases, studied, to remove alkalis present in the wastes

    Characterization and pre-treatment of steelmaking dusts in order to recover valuable products

    Get PDF
    Steelmaking dusts are frequently classified as hazardous residues, due to their eco-toxicity characteristics. This derives mainly from the presence of heavy metals like zinc, lead and cadmium in their compositions, in forms that are easily leachable by water or slightly acidic or alkaline media. Following the most employed eco-toxicity standard tests, like DIN 38414-S41) from Germany, and TCLP (Toxicity Characteristic Leaching Procedure)2) from the United States, steelmaking dusts present a high level of mobility of heavy metals, what is relevant for the evaluation of their environmental impact, when disposed in controlled landfills. By this work, financed by the European Communities COPERNICUS Programme, a characterisation of the dusts generated in different steelmaking plants has been done. Also, the behaviour of the dusts when washed with cold water has been evaluated, giving some informations on the mobility of metals and on the prospects for pre- treatment of the residues to recover valuable products

    Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver

    Get PDF
    Frigid temperatures of the Southern Ocean are known to be an evolutionary driver in Antarctic fish. For example, many fish have reduced red blood cell (RBC) concentration to minimize vascular resistance. Via the oxygen-carrying protein hemoglobin, RBCs contain the vast majority of the body’s iron, which is known to be a limiting nutrient in marine ecosystems. Since lower RBC levels also lead to reduced iron requirements, we hypothesize that low iron availability was an additional evolutionary driver of Antarctic fish speciation. Antarctic Icefish of the family Channichthyidae are known to have an extreme alteration of iron metabolism due to loss of RBCs and two iron-binding proteins, hemoglobin and myoglobin. Loss of hemoglobin is considered a maladaptive trait allowed by relaxation of predator selection since extreme adaptations are required to compensate for the loss of oxygen-carrying capacity. However, iron dependency minimization may have driven hemoglobin loss instead of a random evolutionary event. Given the variety of functions that hemoglobin serves in the endothelium, we suspected the protein corresponding to the 3’ truncated Hbα fragment (Hbα-3’f) that was not genetically excluded by icefish may still be expressed as a protein. Using whole mount confocal microscopy, we show that Hbα-3’f is expressed in the vascular endothelium of icefish retina, suggesting this Hbα fragment may still serve an important role in the endothelium. These observations support a novel hypothesis that iron minimization could have influenced icefish speciation with the loss of the iron-binding portion of Hbα in Hbα-3’f, as well as hemoglobin β and myoglobin

    Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation

    Get PDF
    Inflammatory cell recruitment to local sites of tissue injury and/or infection is controlled by a plethora of signalling processes influencing cell-to-cell interactions between the vascular endothelial cells (ECs) in post-capillary venules and circulating leukocytes. Recently, ATP-sensitive P 2 Y purinergic receptors have emerged as downstream regulators of EC activation in vascular inflammation. However, the mechanism(s) regulating cellular ATP release in this response remains elusive. Here we report that the ATP-release channel Pannexin1 (Panx1) opens downstream of EC activation by TNF-α. This process involves activation of type-1 TNF receptors, recruitment of Src family kinases (SFK) and SFK-dependent phosphorylation of Panx1. Using an inducible, EC-specific Panx1 knockout mouse line, we report a previously unidentified role for Panx1 channels in promoting leukocyte adhesion and emigration through the venous wall during acute systemic inflammation, placing Panx1 channels at the centre of cytokine crosstalk with purinergic signalling in the endothelium

    Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure

    Get PDF
    Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis

    Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane

    No full text
    © 2019 DeLalio et al. Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical forα1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198. We demonstrate that PANX1- mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensivehumansand that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology
    corecore