750 research outputs found
Curcuma Longa Extract as a Sensitizer for Singlet Oxygen Generation
In this work, the spectral study of aqueous extract of Curcuma Longa (Turmeric) to determine the photodynamic properties. It is established that due to the absorption extract light of wavelength 400-450 nm and intensive fluorescence in the red region of the spectrum, this extract can be used as a sensitizer of singlet oxygen (1
The connection analysis between the dilution of the deposited Fe-Cr-V-Mo-C layer by the basic metal and the parameters of its microstructure
In this work, the structure of the Fe-Cr-V-Mo-C coatings received by plasma transferred arc cladding was investigated. Coatings were deposited on plates with a thickness of 10 mm and made from constructional steel (steel 20). The correlation analysis of relationships between dilution of the deposited layers by the basic metal and the parameters of their microstructure was carried out. The parameters were as follows: volume fraction, a size, a shape factor, the distance between particles, the number of particles of vanadium carbide, volume fraction of the eutectic on the basis of carbide M[7]C[3] and the distances between its colonies, as well as the volume fraction of the [alpha]-phase in the alloy matrix
A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis
Signaling networks are designed to sense an environmental stimulus and adapt
to it. We propose and study a minimal model of signaling network that can sense
and respond to external stimuli of varying strength in an adaptive manner. The
structure of this minimal network is derived based on some simple assumptions
on its differential response to external stimuli. We employ stochastic
differential equations and probability distributions obtained from stochastic
simulations to characterize differential signaling response in our minimal
network model. We show that the proposed minimal signaling network displays two
distinct types of response as the strength of the stimulus is decreased. The
signaling network has a deterministic part that undergoes rapid activation by a
strong stimulus in which case cell-to-cell fluctuations can be ignored. As the
strength of the stimulus decreases, the stochastic part of the network begins
dominating the signaling response where slow activation is observed with
characteristic large cell-to-cell stochastic variability. Interestingly, this
proposed stochastic signaling network can capture some of the essential
signaling behaviors of a complex apoptotic cell death signaling network that
has been studied through experiments and large-scale computer simulations. Thus
we claim that the proposed signaling network is an appropriate minimal model of
apoptosis signaling. Elucidating the fundamental design principles of complex
cellular signaling pathways such as apoptosis signaling remains a challenging
task. We demonstrate how our proposed minimal model can help elucidate the
effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a
cell-type independent manner. We also discuss the implications of our study in
elucidating the adaptive strategy of cell death signaling pathways.Comment: 9 pages, 6 figure
Structure activity relationship study of [1,2,3]thiadiazole necroptosis inhibitors
Necroptosis is a regulated caspase-independent cell death mechanism that results in morphological features resembling non-regulated necrosis. This form of cell death can be induced in an array of cell types in apoptotic deficient conditions with death receptor family ligands. A series of [1,2,3]thiadiazole benzylamides was found to be potent necroptosis inhibitors (called necrostatins). A structure activity relationship study revealed that small cyclic alkyl groups (i.e. cyclopropyl) and 2,6-dihalobenzylamides at the 4- and 5-positions of the [1,2,3]thiadiazole, respectively, were optimal. In addition, when a small alkyl group (i.e. methyl) was present on the benzylic position all the necroptosis inhibitory activity resided with the (S)-enantiomer. Finally, replacement of the [1,2,3]thiadiazole with a variety of thiophene derivatives was tolerated, although some erosion of potency was observed
Necrostatin-1 Reduces Histopathology and Improves Functional Outcome after Controlled Cortical Impact in Mice
Necroptosis is a newly identified type of programmed necrosis initiated by the activation of tumor necrosis factor alpha (TNF?)/Fas. Necrostatin-1 is a specific inhibitor of necroptosis that reduces ischemic tissue damage in experimental stroke models. We previously reported decreased tissue damage and improved functional outcome after controlled cortical impact (CCI) in mice deficient in TNF? and Fas. Hence, we hypothesized that necrostatin-1 would reduce histopathology and improve functional outcome after CCI in mice. Compared with vehicle-/inactive analog-treated controls, mice administered necrostatin-1 before CCI had decreased propidium iodide-positive cells in the injured cortex and dentate gyrus (6 h), decreased brain tissue damage (days 14, 35), improved motor (days 1 to 7), and Morris water maze performance (days 8 to 14) after CCI. Improved spatial memory was observed even when drug was administered 15 mins after CCI. Necrostatin-1 treatment did not reduce caspase-3-positive cells in the dentate gyrus or cortex, consistent with a known caspase-independent mechanism of necrostatin-1. However, necrostatin-1 reduced brain neutrophil influx and microglial activation at 48 h, suggesting a novel anti-inflammatory effect in traumatic brain injury (TBI). The data suggest that necroptosis plays a significant role in the pathogenesis of cell death and functional outcome after TBI and that necrostatin-1 may have therapeutic potential for patients with TBI
Recommended from our members
Akt and mTOR mediate programmed necrosis in neurons
Necroptosis is a newly described form of regulated necrosis that contributes to neuronal death in experimental models of stroke and brain trauma. Although much work has been done elucidating initiating mechanisms, signaling events governing necroptosis remain largely unexplored. Akt is known to inhibit apoptotic neuronal cell death. Mechanistic target of rapamycin (mTOR) is a downstream effector of Akt that controls protein synthesis. We previously reported that dual inhibition of Akt and mTOR reduced acute cell death and improved long term cognitive deficits after controlled-cortical impact in mice. These findings raised the possibility that Akt/mTOR might regulate necroptosis. To test this hypothesis, we induced necroptosis in the hippocampal neuronal cell line HT22 using concomitant treatment with tumor necrosis factor α (TNFα) and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. TNFα/zVAD treatment induced cell death within 4 h. Cell death was preceded by RIPK1–RIPK3–pAkt assembly, and phosphorylation of Thr-308 and Thr473 of AKT and its direct substrate glycogen synthase kinase-3β, as well as mTOR and its direct substrate S6 ribosomal protein (S6), suggesting activation of Akt/mTOR pathways. Pretreatment with Akt inhibitor viii and rapamycin inhibited Akt and S6 phosphorylation events, mitochondrial reactive oxygen species production, and necroptosis by over 50% without affecting RIPK1–RIPK3 complex assembly. These data were confirmed using small inhibitory ribonucleic acid-mediated knockdown of AKT1/2 and mTOR. All of the aforementioned biochemical events were inhibited by necrostatin-1, including Akt and mTOR phosphorylation, generation of oxidative stress, and RIPK1–RIPK3–pAkt complex assembly. The data suggest a novel, heretofore unexpected role for Akt and mTOR downstream of RIPK1 activation in neuronal cell death
Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses
Akt Regulates TNF? Synthesis Downstream of RIP1 Kinase Activation during Necroptosis
Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNF? production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNF?. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNF? production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation
Non-Western Peacekeeping as a Factor of a Multipolar World: Outlines of Research Program
This paper describes the contours of a research program on peacekeeping and peacebuilding, representing the interests of Non-Western countries (the world’s majority). The article is based on both individual developments of its expert authors in the theory and practice of peacekeeping, international law and development cooperation, as well as on generalized conclusions of eight international workshops on Non-Western peacekeeping, held by the Department of Theory and History of International Relations of the RUDN University in 2020-2021 with the participation of leading Russian and international experts. Particular attention is paid to the current moment in international peacekeeping associated with the “power transit” (from the United States to China, and more broadly, from the West to the Non-West) and the power vacuum observed in a number of regions. Conclusions are drawn about the crisis of humanitarian intervention and the system of liberal peacekeeping in general. At the same time, the remaining instruments of Western structural power in the field of peacekeeping are examined in detail, covering both personnel representation in the UN and the practice of ‘penholding,’ as well as the discursive hegemony of the “Collective West.” The main directions in the development of Non-Western academic discourse in the field of peacemaking and peacebuilding are explored in the context of building a multipolar world. Special attention is paid to the problems of regional human rights systems in the context of the protection of civilians and post-conflict peacebuilding. The study concludes that Non-Western countries have a significant influence on the formation of international norms in the field of peacekeeping (rule-changers), but so far do not act as norm-setting actors in world politics (rule-makers)
- …