468 research outputs found

    Optimal strategy for polarization modulation in the LSPE-SWIPE experiment

    Get PDF
    Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims. Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods. We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results. Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions. Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments

    CMB Polarization: Scientific Case and Data Analysis Issues

    Get PDF
    We review the science case for studying CMB polarization. We then discuss the main issues related to the analysis of forth-coming polarized CMB data, such as those expected from balloon-borne (e.g. BOOMERanG) and satellite (e.g. Planck) experiments.Comment: 6 pages, 4 figures. To appear in "Astrophysical Polarized Background" Workshop Proceedings, eds. S. Cecchini, S. Cortiglioni, R. Sault and C. Sbarra, AIP, in pres

    A first assessment of genetic variability in the longhorn beetle Rosalia alpina (Coleoptera: Cerambycidae) from the Italian Apennines

    Get PDF
    The Rosalia longicorn (Rosalia alpina) is a strictly protected saproxylic beetle, widely distributed in Central and Southern Europe and mainly associated with ancient beech forests. To improve knowledge about the conservation status of R. alpina in Italy, available molecular markers (microsatellites and mitochondrial cytochrome c oxidase I(COI)) were tested for the first time on Italian populations. The study was performed in four sampling sites distributed in two areas placed in Northern (“Foreste Casentinesi” National Park) and Central Apennines (“Abruzzo, Lazio and Molise” National Park) where populational data about Rosalia longicorn were collected in the framework of the European LIFE MIPP Project. The genetic relationship among Apennine and Central/South-eastern European populations was explored by a comparison with mitochondrial DNA (mtDNA) data from literature. Microsatellite markers were only partially informative when applied to R. alpina Italian individuals, although providing some preliminary indication on an extensive gene flow among populations from the Apennines and local ongoing processes of genetic erosion. Genetic data are consistent with previous ecological data suggesting that the maintenance of variability in this species could be related to both habitat continuity and preservation of large senescent or standing dead trees in forests. Finally, a peculiar origin of the Apennine populations of R. alpina from a putative “Glacial Refugium” in Italy was inferred through COI data. The high genetic distance scored among the analysed populations and those from Central and South-eastern Europe indicates that the R. alpina deme from Apennine Mountains might represent a relevant conservation unit in Europe. Further genetic analyses will allow assessing other possible conservation units of R. alpina and, thus, defining large-scale conservation strategies to protect this endangered longhorn beetle in Europe

    ROMA: a map-making algorithm for polarised CMB data sets

    Full text link
    We present ROMA, a parallel code to produce joint optimal temperature and polarisation maps out of multidetector CMB observations. ROMA is a fast, accurate and robust implementation of the iterative generalised least squares approach to map-making. We benchmark ROMA on realistic simulated data from the last, polarisation sensitive, flight of BOOMERanG.Comment: Accepted for publication in Astronomy & Astrophysics. Version with higher quality figures available at http://www.fisica.uniroma2.it/~cosmo/ROM

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift zz\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I

    Guidelines for the monitoring of Rosalia alpina

    Get PDF
    Copyright Alessandro Campanaro et al. Rosalia alpina (Linnaeus, 1758) is a large longhorn beetle (Coleoptera: Cerambycidae) which is protected by the Habitats Directive and which typically inhabits beech forests characterised by the presence of mature, dead (or moribund) and sun-exposed trees. A revision of the current knowledge on systematics, ecology and conservation of R. alpina is reported. The research was carried out as part of the LIFE MIPP project which aims to find a standard monitoring method for saproxylic beetles protected in Europe. For monitoring this species, different methods were tested and compared in two areas of the Apennines, utilising wild trees, logs and tripods (artificially built with beech woods), all potentially suitable for the reproduction of the species. Even if all methods succeeded in the survey of the target species, these results showed that the use of wild trees outperformed other methods. Indeed, the use of wild trees allowed more adults to be observed and required less intensive labour. However, monitoring the rosalia longicorn on wild trees has the main disadvantage that they can hardly be considered “standard sampling units”, as each tree may be differently attractive to adults. Our results demonstrated that the most important factors influencing the attraction of single trunks were wood volume, sun-exposure and decay stage. Based on the results obtained during the project LIFE MIPP, as well as on a literature review, a standard monitoring method for R. alpina was developed

    Non-Gaussian bubbles in the sky

    Full text link
    We point out a possible generation mechanism of non-Gaussian bubbles in the sky due to bubble nucleation in the early universe. We consider a curvaton scenario for inflation and assume that the curvaton field phi, whose energy density is subdominant during inflation but which is responsible for the curvature perturbation of the universe, is coupled to another field sigma which undergoes false vacuum decay through quantum tunneling. For this model, we compute the skewness of the curvaton fluctuations due to its interaction with sigma during tunneling, that is, on the background of an instanton solution that describes false vacuum decay. We find that the resulting skewness of the curvaton can become large in the spacetime region inside the bubble. We then compute the corresponding skewness in the statistical distribution of the cosmic microwave background (CMB) temperature fluctuations. We find a non-vanishing skewness in a bubble-shaped region in the sky. It can be large enough to be detected in the near future, and if detected it will bring us invaluable information about the physics in the early universe.Comment: 6 pages, 6 figure

    Cosmological Parameters from the 2003 flight of BOOMERANG

    Full text link
    We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the Λ\LambdaCDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.Comment: 18 pages, 10 figures, submitted to Ap

    CMB Power Spectrum Estimation for the Planck Surveyor

    Get PDF
    We use an iterative generalized least squares map-making algorithm, in conjunction with Monte Carlo techniques, to obtain estimates of the angular power spectrum from cosmic microwave background (CMB) maps. This is achieved by characterizing and removing the instrumental noise contribution in multipole space. This technique produces unbiased estimates and can be applied to an arbitrary experiment. In this paper, we use it on realistic simulations of Planck Low Frequency Instrument (LFI) observations, showing that it can lead to fast and reliable estimation of the CMB angular power spectrum from megapixel maps.Comment: 6 pages, 5 figures. Matching accepted versio
    corecore