10,369 research outputs found

    Effect of dispersion interactions on the properties of LiF in condensed phases

    Full text link
    Classical molecular dynamics simulations are performed on LiF in the framework of the polarizable ion model. The overlap-repulsion and polarization terms of the interaction potential are derived on a purely non empirical, first-principles basis. For the dispersion, three cases are considered: a first one in which the dispersion parameters are set to zero and two others in which they are included, with different parameterizations. Various thermodynamic, structural and dynamic properties are calculated for the solid and liquid phases. The melting temperature is also obtained by direct coexistence simulations of the liquid and solid phases. Dispersion interactions appear to have an important effect on the density of both phases and on the melting point, although the liquid properties are not affected when simulations are performed in the NVT ensemble at the experimental density.Comment: 8 pages, 5 figure

    Solving polynomial eigenvalue problems by means of the Ehrlich-Aberth method

    Full text link
    Given the n×nn\times n matrix polynomial P(x)=i=0kPixiP(x)=\sum_{i=0}^kP_i x^i, we consider the associated polynomial eigenvalue problem. This problem, viewed in terms of computing the roots of the scalar polynomial detP(x)\det P(x), is treated in polynomial form rather than in matrix form by means of the Ehrlich-Aberth iteration. The main computational issues are discussed, namely, the choice of the starting approximations needed to start the Ehrlich-Aberth iteration, the computation of the Newton correction, the halting criterion, and the treatment of eigenvalues at infinity. We arrive at an effective implementation which provides more accurate approximations to the eigenvalues with respect to the methods based on the QZ algorithm. The case of polynomials having special structures, like palindromic, Hamiltonian, symplectic, etc., where the eigenvalues have special symmetries in the complex plane, is considered. A general way to adapt the Ehrlich-Aberth iteration to structured matrix polynomial is introduced. Numerical experiments which confirm the effectiveness of this approach are reported.Comment: Submitted to Linear Algebra App

    Exact simulation of the Wright-Fisher diffusion

    Full text link
    The Wright-Fisher family of diffusion processes is a widely used class of evolutionary models. However, simulation is difficult because there is no known closed-form formula for its transition function. In this article we demonstrate that it is in fact possible to simulate exactly from a broad class of Wright-Fisher diffusion processes and their bridges. For those diffusions corresponding to reversible, neutral evolution, our key idea is to exploit an eigenfunction expansion of the transition function; this approach even applies to its infinite-dimensional analogue, the Fleming-Viot process. We then develop an exact rejection algorithm for processes with more general drift functions, including those modelling natural selection, using ideas from retrospective simulation. Our approach also yields methods for exact simulation of the moment dual of the Wright-Fisher diffusion, the ancestral process of an infinite-leaf Kingman coalescent tree. We believe our new perspective on diffusion simulation holds promise for other models admitting a transition eigenfunction expansion.Comment: 36 pages, 2 figure, 2 tables. This version corrects an error in the proof of Lemma 6.

    Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications

    Full text link
    We present a novel algorithm to perform the Hessenberg reduction of an n×nn\times n matrix AA of the form A=D+UVA = D + UV^* where DD is diagonal with real entries and UU and VV are n×kn\times k matrices with knk\le n. The algorithm has a cost of O(n2k)O(n^2k) arithmetic operations and is based on the quasiseparable matrix technology. Applications are shown to solving polynomial eigenvalue problems and some numerical experiments are reported in order to analyze the stability of the approac
    corecore