10 research outputs found

    About the stabilization of the dendritic structure of GG brand copper powder

    Full text link
    In industry copper powder is recieved under constant current load. Surface roughening occurs during evolution of the dendritic particles. It is suggested to create a new impulse of current equal to the initial current density of 3200 A/m2 in order to obtain uniform structure of the precipitate. Current load was evaluated by the result of chronopotentiometry research of the dynamics of the dendritic precipitate on cylindrical electrode. Four-impulse galvanostatic electrolysis was investigated for the copper powder GG. New current impulse shifts the electrode potential to the cathodic area, crystallization process flows more rapidly.This work was done under financial support from RFBR β„– 11-03-002296

    ЭлСктрохимичСскоС ΠΎΠ±Π΅Π·ΠΌΠ΅ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Π΄Π½ΠΎ-ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π½ΠΎΠ³ΠΎ элСктролита

    Get PDF
    Copper and nickel ions are accumulated in the solution during electrolytic refining of copper. These ions need to be extracted from the solution from time to time. In industry copper extraction is carried out in two stages. It results in copper ions concentration reducing to 1 g/l. Numerical simulation was used to define dependence of the process of copper extraction from particular parameters: mixing of electrolyte, volume of electrolyte, area of cathodic surface. The process of copper extraction was investigated in still electrolyte and during mixing of the solution. Smooth and compact precipitate crystallized on the cathode in all experiments. Rate of copper extraction during mixing of electrolyte is higher than in still electrolyte. The industrial method of abuseive sulphate electrolyte results in the formation on the cathode dendritic sediment copper ions which are restored in extreme conditions. The decrease in the concentration of copper at I = const causes the formation of dendritic sludge that is easily crumbles to the bottom of the cell, enriching copper sludge. Guarantee smooth sediment when basmajian with obtaining compact copper,Β excluding besides the recovery of arsenic emitting poisonous arsina cars is the organization of intensive mixing or electrolyte circulation, ensuring the recovery of copper ions in limitless conditions smooth and sediment.ΠŸΡ€ΠΈ элСктролитичСском Ρ€Π°Ρ„ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅Π΄ΠΈ Π² растворС элСктролита Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΈΠΎΠ½Ρ‹ никСля ΠΈ ΠΌΠ΅Π΄ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ пСриодичСски ΠΈΠ·Π²Π»Π΅ΠΊΠ°Ρ‚ΡŒ. Π’ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π΄ΠΈ проводят Π² Π΄Π²Π΅ стадии, сниТая ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ ΠΌΠ΅Π΄ΠΈ Π΄ΠΎ 1 Π³/Π». ЧислСнным ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ установлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости обСзмСТивания ΠΎΡ‚ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²: ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ элСктролита, Π΅Π³ΠΎ объСма, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ°Ρ‚ΠΎΠ΄Π½ΠΎΠΉ повСрхности,. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдован процСсс обСзмСТивания Π² спокойном элСктролитС ΠΈ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠΈ раствора. Π’ΠΎ всСх ΠΎΠΏΡ‹Ρ‚Π°Ρ… Π½Π° ΠΊΠ°Ρ‚ΠΎΠ΄Π΅ кристаллизовался Π³Π»Π°Π΄ΠΊΠΈΠΉ, ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½Ρ‹ΠΉ осадок ΠΌΠ΅Π΄ΠΈ. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обСзмСТивания ΠΏΡ€ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π² спокойном элСктролитС

    Analysis of structural variations of the precipitate based on monitoring the industrial electrolysis of copper powders of various brands

    Full text link
    This study is associated with the solution to the blending problem of the charge for the output of ready articles. The main requirements are claimed to the specific surface and the packed density of the powders of basic brands PML0, PMS-1, and GG. The dynamics of the development of the dendrite depositions for powders of mentioned brands with the simultaneous registration of the cathodic overvoltage is investigated under industrial experimental conditions. The procedure is developed and the results of the continuous monitoring of the deposition growth with the direct immersion of a video camera into the electrolyte are presented. The reproducibility of the results is evaluated statistically. Based on the galvanostatic crystallization model of the dendrite deposition on the rod electrode, the dynamics of varying the density (N) and radius (r t) of growing tips on the growth front is calculated. It is established by variance analysis that structural parameters N and r t are individual for depositions of every brand, so that the preparation conditions of the deposition during the electrolysis should be strictly fulfilled as the charge forms. Β© 2013 Allerton Press, Inc

    Effect of the Nature of Deposited Metal on the Morphology of Electrolytic Deposits

    Full text link
    УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»Π°, Ρ€Π°Π·Ρ€ΡΠΆΠ°ΡŽΡ‰ΠΈΡ…ΡΡ Π½Π° ΠΊΠ°Ρ‚ΠΎΠ΄Π΅, ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС Π½Π° ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ осадка. Осадки никСля ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠΉ структурой ΠΏΠ΅Π½Ρ‹: Π½Π° Π½ΠΈΡ… ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ ΠΏΠΎΡ€Ρ‹ (ΠΊΠ°Π½Π°Π»Ρ‹ эвакуации Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°), Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… кристаллизуСтся ΠΌΠ΅Ρ‚Π°Π»Π» Π² Ρ„ΠΎΡ€ΠΌΠ΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚ΠΎΠ². Осадки сплава Ni–Co ΠΏΠΎ своСй ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ Ρ€Ρ‹Ρ…Π»Ρ‹ΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌ.It was found that the nature of metal ions discharged at the cathode has a significant effect on the deposit morphology. Pure nickel deposits have a typical foam structure with large pores composed of dendrites. The Ni-Co alloy deposits are characterized by morphology close to loose powder metals

    About the stabilization of the den-dritic structure of copper powder brand GG

    Full text link
    Π’ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΏΠΎΡ€ΠΎΡˆΠΎΠΊ ΠΌΠ΅Π΄ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ постоянной Ρ‚ΠΎΠΊΠΎΠ²ΠΎΠΉ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ. По ΠΌΠ΅Ρ€Π΅ развития Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ осадка происходит ΠΎΠ³Ρ€ΡƒΠ±Π»Π΅Π½ΠΈΠ΅ повСрхности. Для получСния Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠΎ структурС осадка ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π·Π°Π΄Π°Π²Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡ Ρ‚ΠΎΠΊΠ°, Ρ€Π°Π²Π½Ρ‹ΠΉ исходной плотности Ρ‚ΠΎΠΊΠ° 3200 А/ΠΌ2. Π’ΠΎΠΊΠΎΠ²ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ опрСдСляли ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ хронопотСнциомСтричСских исслСдований Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ развития Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ осадка Π½Π° цилиндричСском элСктродС. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ Π³Π°Π»ΡŒΠ²Π°Π½ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ элСктролиза для ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΌΠ΅Π΄ΠΈ ΠΌΠ°Ρ€ΠΊΠΈ GG. Новый ΠΈΠΌΠΏΡƒΠ»ΡŒΡ Ρ‚ΠΎΠΊΠ° сдвигаСт ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» элСктрода Π² Π±ΠΎΠ»Π΅Π΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, процСсс кристаллизации ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ интСнсивно

    Electrochemical copper extraction from sulphate electrolyte

    Full text link
    ΠŸΡ€ΠΈ элСктролитичСском Ρ€Π°Ρ„ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅Π΄ΠΈ Π² растворС элСктролита Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΈΠΎΠ½Ρ‹ никСля ΠΈ ΠΌΠ΅Π΄ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ пСриодичСски ΠΈΠ·Π²Π»Π΅ΠΊΠ°Ρ‚ΡŒ. Π’ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π΄ΠΈ проводят Π² Π΄Π²Π΅ стадии, сниТая ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ ΠΌΠ΅Π΄ΠΈ Π΄ΠΎ 1 Π³/Π». ЧислСнным ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ установлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости обСзмСТивания ΠΎΡ‚ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²: ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ элСктролита, Π΅Π³ΠΎ объСма, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ°Ρ‚ΠΎΠ΄Π½ΠΎΠΉ повСрхности. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдован процСсс обСзмСТивания Π² спокойном элСктролитС ΠΈ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠΈ раствора. Π’ΠΎ всСх ΠΎΠΏΡ‹Ρ‚Π°Ρ… Π½Π° ΠΊΠ°Ρ‚ΠΎΠ΄Π΅ кристаллизовался Π³Π»Π°Π΄ΠΊΠΈΠΉ, ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½Ρ‹ΠΉ осадок ΠΌΠ΅Π΄ΠΈ. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обСзмСТивания ΠΏΡ€ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π² спокойном элСктролитС. ΠŸΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹ΠΉ способ обСзмСТивания ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π½ΠΎΠ³ΠΎ элСктролита ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π½Π° ΠΊΠ°Ρ‚ΠΎΠ΄Π΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ осадка ΠΌΠ΅Π΄ΠΈ, ΠΈΠΎΠ½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… условиях. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Π΄ΠΈ ΠΏΡ€ΠΈ I = const Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ осадка, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π»Π΅Π³ΠΊΠΎ осыпаСтся Π½Π° Π΄Π½ΠΎ элСктролизСра, обогащая мСдью шлам. Π“Π°Ρ€Π°Π½Ρ‚ΠΈΠ΅ΠΉ получСния Π³Π»Π°Π΄ΠΊΠΎΠ³ΠΎ осадка ΠΏΡ€ΠΈ ΠΎΠ±Π΅Π·ΠΌΠ΅ΠΆΠΈΠ²Π°Π½ΠΈΠΈ с ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈ, ΠΈΡΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ восстановлСния ΠΌΡ‹ΡˆΡŒΡΠΊΠ° с Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ядовитого арсина, являСтся организация интСнсивного ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΈΠ»ΠΈ циркуляции элСктролита, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π°Ρ восстанавлСниС ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ Π² Π΄ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… условиях Π² Π²ΠΈΠ΄Π΅ Π³Π»Π°Π΄ΠΊΠΎΠ³ΠΎ осадка.Copper and nickel ions are accumulated in the solution during electrolytic refining of copper. These ions need to be extracted from the solution from time to time. In industry copper extraction is carried out in two stages. It results in copper ions concentration reducing to 1 g/l. Numerical simulation was used to define dependence of the process of copper extraction from particular parameters: mixing of electrolyte, volume of electrolyte, area of cathodic surface. The process of copper extraction was investigated in still electrolyte and during mixing of the solution. Smooth and compact precipitate crystallized on the cathode in all experiments. Rate of copper extraction during mixing of electrolyte is higher than in still electrolyte. The industrial method of abuseive sulphate electrolyte results in the formation on the cathode dendritic sediment copper ions which are restored in extreme conditions. The decrease in the concentration of copper at I = const causes the formation of dendritic sludge that is easily crumbles to the bottom of the cell, enriching copper sludge. Guarantee smooth sediment when basmajian with obtaining compact copper, excluding besides the recovery of arsenic emitting poisonous arsina cars is the organization of intensive mixing or electrolyte circulation, ensuring the recovery of copper ions in limitless conditions smooth and sediment

    ИспользованиС поляризационных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ для расчСта Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ

    No full text
    The paper considers a method used to determine Faraday current efficiency (CeF) based on the ratio of partial currents of metal and hydrogen reduction. To calculate the Faraday current efficiency based on polarization measurements, it is necessary to know the working current density and potential (Ei) at which the metal is deposited in the corresponding solution, as well as kinetic parameters of hydrogen evolution for determining the partial current density of hydrogen (iН2 ) at this potential. The proposed method was used to calculate current efficiency for the processes of nickel extraction and nickel coating application from solutions containing nickel sulfate at current density of 300 A/m2. The study allowed to determine kinetic parameters of hydrogen evolution by the polarization curve obtained in the background electrolyte solution containing 120 g/l of magnesium sulfate and 18 g/l of boric acid at pH = 3.9. An equation was obtained to calculate the partial current density of hydrogen evolution at any potential by kinetic parameters. The use of kinetic regularities made it possible to calculate nickel CeF in sulphate solutions of different composition and with different pH values (3.0 and 4.1). The calculated CeF values within the margin of error coincide with the current efficiency value determined by the gravimetric method using a copper coulometer. It is shown that the division of the Β«total current efficiencyΒ» (CeΞ£), which is a commercial indicator, into Faraday (CeF) and apparatus (Ceap) indicators in combination with the method using partial polarization provide additional information about the degree of process perfection.РассмотрСн ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния фарадССвского Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ (CeF), основанный Π½Π° ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΠΊΠΎΠ² выдСлСния ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°. Для расчСта Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ CeF Π½Π° основании поляризационных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ Ρ€Π°Π±ΠΎΡ‡ΡƒΡŽ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠΊΠ° ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» (Ei), ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ происходит осаТдСниС ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌ растворС, Π° Ρ‚Π°ΠΊΠΆΠ΅ кинСтичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ выдСлСния Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° для опрСдСлСния ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ плотности Ρ‚ΠΎΠΊΠ° Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° (iН2 ) ΠΏΡ€ΠΈ этом ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π΅. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π±Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ расчСт Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ для процСссов экстракции никСля ΠΈ нанСсСния Π½ΠΈΠΊΠ΅Π»Π΅Π²ΠΎΠ³ΠΎ покрытия ΠΈΠ· растворов, содСрТащих ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ никСля, ΠΏΡ€ΠΈ плотности Ρ‚ΠΎΠΊΠ° 300 А/ΠΌ2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ кинСтичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ выдСлСния Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΏΠΎ поляризационной ΠΊΡ€ΠΈΠ²ΠΎΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π² растворС Ρ„ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ элСктролита, содСрТащСм 120 Π³/Π» ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° магния ΠΈ 18 Π³/Π» Π±ΠΎΡ€Π½ΠΎΠΉ кислоты ΠΏΡ€ΠΈ рН = 3,9. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ для расчСта ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ плотности Ρ‚ΠΎΠΊΠ° выдСлСния Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΏΡ€ΠΈ любом ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π΅ ΠΏΠΎ кинСтичСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ. ИспользованиС кинСтичСских закономСрностСй ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ CeF никСля Π² ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π½Ρ‹Ρ… растворах Ρ€Π°Π·Π½ΠΎΠ³ΠΎ со- става с рН = 3,0 ΠΈ 4,1. РассчитанныС значСния CeF Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… статистичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ совпали с Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ вСсовым ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Π΄Π½ΠΎΠ³ΠΎ ΠΊΡƒΠ»ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€Π°. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ коммСрчСского показатСля «суммарный Π²Ρ‹Ρ…ΠΎΠ΄ ΠΏΠΎ Ρ‚ΠΎΠΊΡƒΒ» (CeΞ£) Π½Π° фарадССвский (CeF) ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½Ρ‹ΠΉ (Ceap) Π² сочСтании с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… поляризационных ΠΊΡ€ΠΈΠ²Ρ‹Ρ… позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ стСпСни ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²Π° тСхнологичСского процСсса
    corecore